C 2022 SOIL RESULT ASSESSMENT | 2022 Site Investigation Summary Table 1 |---|------------------------------|---|---|---|---|--|---------------------------------------|---|---|---|---|---|---|---|--|--|--|--|---|---|--|---|---|---|--| | Sample Reference
Depth (m) | | Otto A | ECTP1
0.20 | ECTP1
0.50 | ECTP1
1.00 | ECTP1
1.50 | 0.20 | 0.50 | ECTP2
1.50 | 3.00 | 0.20 | 0.50 | ECTP3
1.00 | ECTP3
1.50 | 0.20 | 0.50 | ECTP4
1.00 | ECTP4
1.50 | 0.20 | 0.50 | ECTPS
1.00 | ECTPS
1.50 | 0.20 | 0.50 | ECTP6
1.50 | | Analytical Parameter
(Soil Analysis) | Units | Criteria (Noside rejal with Plant Up takes) Limit of data ction | Stone Content Moisture Content Total mass of sample received | %
%
%g | 0.1
0.01
0.001 | < 0.1
15
1.3 | < 0.1
17
1.3 | < 0.1
20
1.3 | < 0.1
19
1.4 | < 0.1
13
1.3 | < 0.1
9.8
1.3 | < 0.1
16
1.3 | < 0.1
17
1.3 | 14
13
1.3 | < 0.1
14
1.3 | < 0.1
12
1.3 | < 0.1
13
1.3 | < 0.1
13
1.3 | < 0.1
13
1.3 | < 0.1
10
1.3 | < 0.1
11
1.3 | 61
6.3
1.3 | 32
11
1.3 | 28
14
1.3 | < 0.1
16
1.3 | 63
1
1.3 | 52
8.2
1.3 | < 0.1
29
1.3 | | | | | | | | | | | | | Chrysotile, | Chrysotile,
Amosite,
Crocidolite- Loose | | | Amosite- Loose | Chrysotile,
Amosite, | | | | | | | | Chrysotile,
Crocidolite-Loose | | | Asbestos in Soil Screen / Identification Name
Asbestos in Soil
Asbestos Analyst ID | Type
Type | N/A
N/A
N/A | | Not-detected
SPU | | - | Not-detected | Not-detected
SPU | | - | Chrysotile,
Crocidolite- Loose
Fibres
Detected | Fibres, Loose
Fibrous Debris
Detected | | | Fibres
Detected | Crocidolite- Loose
Fibres
Detected | | | Not-detected
SPU | Not-detected
SPU | | - | Not-detected
DSA | Fibres
Detected | | | General Inorganics | | | • | | | N/A | • | | N/A | N/A | SPU | SPU | N/A | N/A | SPU | SPU | N/A | N/A | | | | | | DSA | N/A | | pH - Automated
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction | pH Units
gfl
mg/kg | N/A
0.00125
2.5 | 6.8 | 7
0.0045
9
4.5 | 7.4 | 7.6
0.013
25 | 8.1 | 8.2
0.014
27 | 7.9 | 7.9
0.056
110 | | 7.6
0.075
150 | 8.5 | 8.4
0.068
140 | 8.4 | 8.2
0.0093
19 | 8.2 | 8.1
0.031
61 | 8.2 | 7.8
0.026
52 | 8.1 | 8.1
0.03
61 | 9.3 | 8.5
0.079
160 | 6.5 | | Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction
Heavy Metals / Metalloids | mgri | LIS | | • | • | 12.6 | | 13.6 | | 56.4 | | 74.6 | - | 67.7 | | 9.3 | | 30.5 | | 25.9 | | 30.4 | • | 79 | | | Arseric (aqua regia extractable) Cadmium (aqua regia extractable) Chomium (lecuavalent) | mg/kg
mg/kg
mg/kg | 1 37
0.2 11
1.8 6
1 910 | < 1.8 | 3.6
< 0.2
< 1.8 | 4.6
< 0.2
< 1.8 | 2.7
< 0.2
< 1.8 | 0.50
< 1.8 | 8.8
< 0.2
< 1.8 | 7.8
< 0.2
< 1.8 | 8.4
< 0.2
< 1.8 | 11
< 0.2
< 1.8
16 | 8.3
< 0.2
< 1.8 | 29
< 0.2
< 1.8 | 14
< 0.2
< 1.8 | 14
0.60
< 1.8 | 12
0.90
< 1.8
18 | 20
< 0.2
< 1.8
17 | 15
< 0.2
< 1.8
9.3 | 4.8
< 0.2
< 1.8 | 16
0.70
< 1.8 | 10
0.50
< 1.8
40 | 8
0.30
< 1.8 | 1.6
< 0.2
< 1.8 | 12
< 0.2
< 1.8 | 21
1.20
< 1.8 | | Chromium (III)
Chromium (aqua regia extractable)
Copper (aqua regia extractable)
Lead (aqua regia extractable) | mg/kg
mg/kg | 1 2400
1 190 | 18
17 | 18
19
4.3
4 | 14
15
3.8
4.1 | 17
17
4
3.7 | 16
16
92
210 | 14
14
47
120 | 18
18
21
35 | 17
17
22
39 | 16
17
44
100 | 15
36
110 | 11
11
7.5
8.3 | 9.5
9.9
7.4
12 | 21
21
96
250 | 18
18
65
180 | 17
17
65
160 | 9.3
9.4
160
28 | 6.1
6.9
32
45 | 21
21
81
180 | 40
40
64
150 | 31
32
51
96 | 14
14
50
11 | 24
24
60
130 | 27
29
150
440 | | Lead (aqua regia extractable) Mercury (aqua regia extractable) Sidoal (aqua regia extractable) Selenium (aqua regia extractable) | mg/kg
mg/kg | 0.3 40
1 130
1 250 | < 0.3
17 | < 0.3
17
< 1.0 | <0.3
16
<1.0 | < 0.3
16
< 1.0 | < 0.3
26
< 1.0 | 0.4
45
< 1.0 | < 0.3
19
< 1.0 | < 0.3
16
< 1.0 | < 0.3
32
< 1.0 | < 0.3
21
< 1.0 | < 0.3
13
< 1.0 | < 0.3
11
< 1.0 | 0.5
35
< 1.0 | 1.1
30
< 1.0 | 1.6
23
< 1.0 | 0.3
13
< 1.0 | < 0.3
10
< 1.0 | 2.2
36
< 1.0 | 8.7
54
< 1.0 | 1.5
43
< 1.0 | < 0.3
170
< 1.0 | < 0.3
87
< 1.0 | 2.5
72
<1.0 | | Zinc (aqua regia extractable) Monoaromatics & Oxygenates | mg/kg | 1 3700 | 21 | 19 | 20 | 20 | 160 | 140 | 54 | 65 | 120 | 130 | 150 | 31 | 240 | 200 | 160 | 49 | 170 | 250 | 180 | 130 | 82 | 180 | 570 | | Senzene
Tolvane
Ethylbenzene | höyö
höyö
höyö | 5 170
5 290000
5 110000 | < 5.0
< 5.0
< 5.0 | o & m-cylene
o-cylene
MTBE (Methyl Tertiary Butyl Ether) | haya
haya
haya | 5 130000
5 1400000
5 | < 5.0
< 5.0
< 5.0 | Petroleum Hydrocarbons
TPH-CNG - Aliphatic >ECS - EC6 HE SD BL | mg/kg | 0.001 76 | < 0.001 | | < 0.001 | | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | < 0.001 | | < 0.001 | < 0.001 | | TPH-CWG - Alphatic >EC6 - EC8 _{HE, SO, KE}
TPH-CWG - Alphatic >EC8 - EC10 _{HE, SO, KE}
TPH-CWG - Alphatic >EC10 - EC12 _{BE, SO, SO, KE} | mg/kg
mg/kg
mg/kg | 0.001 78
0.001 230
0.001 65
1 330 | < 0.001
< 0.001
< 1.0 | < 0.001
1
42 | < 0.001
0.39
< 1.0 | < 0.001
< 0.001
2.4 | < 0.001
< 0.001
8.7 | 0.001
0.003
4 | < 0.001
< 0.001
4.6 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
0.11
20 | < 0.001
< 0.001
20 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
17 | < 0.001
0.2
16 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | 7.1
95
11 | | TPH-CNG - Aliphatic >EC12 - EC16 _{BH CH 2D AL}
TPH-CNG - Aliphatic >EC16 - EC21 _{BH CH 2D AL}
TPH-CNG - Aliphatic >EC21 - EC35 _{BH CH 2D AL} | mg/kg
mg/kg | 2 2400
8 | 7.3
28
98 | 8.3
16
48 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | 16
20
25 | 400
550
400 | 190
250
200 | 85
220
370 | 95
220
340 | 22
36
46 | 81
130
140 | < 2.0
< 8.0
20 | 5.9
21
46 | 210
340
460 | 320
460
420 | < 2.0
< 8.0
< 8.0 | < 2.0
67
2500 | 200
280
300 | 170
270
400 | < 2.0
14
180 | 18
27
130 | 87
48
48 | | TPH-CWG - Aromatic >ECS - EC7 _{HI ID M} | mg/kg
mg/kg | 0.001 140 | < 0.001 | 72
< 0.001 | < 10 | < 10 | < 10 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 360
< 0.001 | 26
< 0.001 | 72
< 0.001 | | 1200 | < 0.001 | 2600
< 0.001 | < 0.001 | < 0.001 | < 0.001 | 180
< 0.001 | 300
< 0.001 | | TPH-CWG - Aromatic >ECF - ECB _{HI 2D M} TPH-CWG - Aromatic >ECB - EC10 _{HI 2D M} | | 0.001 290
0.001 83
1 180 | | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
11 | < 0.001
< 0.001
11 | < 0.001
< 0.001
5.7 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
1.9 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
2.9 | < 0.001
< 0.001
3.7 | < 0.001
< 0.001
2.5 | < 0.001
< 0.001
3.1 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
8.1 | < 0.001
< 0.001
6.8 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
14 | | THI-CWG - Aromatic SEC14 - EC16 _{Bit} C ₁₁ to M
THI-CWG - Aromatic SEC16 - EC21 _{Bit} C ₁₁ to M
THI-CWG - Aromatic SEC16 - EC21 _{Bit} C ₁₁ to M
THI-CWG - Aromatic SEC11 - EC35 _{Bit} C ₁₁ to M
THI-CWG - Aromatic (EC5 - EC35) _{Bit} C ₁₁ to M | | 2 330
30 540
30 1500
30 | < 2.0
12
110
120 | 4.2
13
67
84 | < 2.0
< 10
< 10 | < 2.0
< 10
< 10
< 10 | 4.4
15
33
52 | 44
400
450
910 | 160
450
440
1100 | 85
190
230
510 | 36
210
450 | 79
320
640
1000 | < 2.0
< 10
21 | 34
120
200
360 | 11
23
46
83 | 10
26
58
97 |
110
360
710
1200 | 110
400
620
1100 | < 2.0
< 10
21 | 3
35
720
750 | 110
240
280
640 | 110
250
320
690 | < 2.0
< 10
240
240 | 9.2
29
220
260 | 62
35
39
150 | | VOCs | | | 120 | • | < 10 | | 52 | | | | /00 | | -50 | | 63 | | | | | | | | 240 | | | | Chloromethane
Chloroethane
Bromomethane
Vivyl Chloride | höys
höys
höys
höys | 5
5
5
5 0.87 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | Trichiorottane 1,1-Dichiorottane 1,12-Trichiorottane 1,12-Trichioro 1,2,2-Trifluorottane | haya
haya
haya | 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Cis-1,2-dichloroethene
MTBE (Methyl Tertiary Butyl Ether)
1,1-Dichloroethane | haya | 5
5
5 | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0 | < 5.0 | | 2,2-Dichloropropane Erichloromethane 1,1,1-Trichloroethane | haya
haya
haya | 5 1700
5 18000 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
30
< 5.0 | | 1,2-Dichloroethane
1,1-Dichloropropene
Trans-1,2-dichloroethane | | 5 18000
5 11
5
5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0 | 30
< 5.0
< 5.0
< 5.0
< 5.0 | | Benzene
Tetrachloromethane
1,2-Dichloropropane | haya
haya
haya | 5
5
5 56
5
5 34 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Trictionosthiene
Dibromomethane
Bromodichloromethane | haya | 5 | | < 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0 | < 5.0
< 5.0 | | Cis-1,3-dichloropropene
Frans-1,3-dichloropropene
Toluene
1,1,2-Trichloroethane | höyd
höyd
höyd | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,3-Dichloropropane 1,3-Dichloropropane Dibromochloromethane Estra-bloropropane | haya
haya
haya | 5
5
5 390 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,2-Obromoethane
Chlorobenzene
1,1,1,2-Tetrachloroithane | µg/kg | 5 1000 | | < 5.0 | < 5.0
< 5.0 | < 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | Ethylbenzene
p & m-Xylene
Styrene | halka | 5 3400
5 5
5 5 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Tribromomethane o-Xylene 1,1,2,2-Tetrachloroethane | halka | 5
5
5
5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | Sopropyberaene
Bromobenaine
n-Propyberaene | | 5 5 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 4-Chlorotolume
4-Chlorotolume
1,3,5-Trimethylbenzene | häxä | 5 5 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0
< 5.0 | < 5.0
< 5.0 | | ten-Butylberoene
1,2,4-Trinnethylberoene
sec-Butylberoene | h8 _g 84 | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
230
< 5.0
< 5.0 | | 1,3-Dichlorobenzane p-Isopropylobare 1,2-Dichlorobenzane 1,4-Dichlorobenzane | | 5 1000
5 5 55000
5 150000 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
<
5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Subybenzene 1,2-Diromo-3-chloropropane 1,2,4-Trichlorobenzene | haya
haya
haya | 5 | | < 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0 | : | < 5.0 | < 5.0
< 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | : | < 5.0
< 5.0 | < 5.0
< 5.0 | | Hesachicrobutadiene
1,2,3-Trichlorobenzene | hõlgā | 5 6400
5 3600 | • | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | SVOCs
Aniline
Phenol | mg/kg
mg/kg | | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | 3.4
0.3 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1*
< 0.2* | 0.3*
< 0.2* | < 0.1
< 0.2 | | 2-Chlorophenol
Bis(2-chlorophyl)uther
1,3-Dichlorophyname
1,3-Dichlorophyname | mg/kg | 0.1 2 | < 0.1
< 0.2
< 0.2
< 0.1 0.1°
< 0.2°
< 0.2°
< 0.1° | < 0.1°
< 0.2°
< 0.2°
< 0.1° | < 0.1
< 0.2
< 0.2
< 0.1 | | 1,2-Dichlorobenzane 1,4-Dichlorobenzane 8is(2-Otloroisopropyl)ether 2-Mathylphenol | | | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.06 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.1°
< 0.2°
< 0.1°
< 0.3°
< 0.05° | < 0.1*
< 0.2*
< 0.1*
< 0.3*
< 0.05* | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | | 2-Mathyliphanol
Hisrad-hirrosthane
Hisrad-inchane
4-Mathyliphanol
Sophorone | | 0.1
0.3
0.05
0.3 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05 | < 0.05 | < 0.05 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05 | < 0.3 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.3 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.3 | < 0.05 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05 | < 0.3* | < 0.3* | | | 4-Methyphenol
Sophorone
2-Ntrophenol
2,4-Dimethylphenol | | 0.2
0.2
0.3
0.3 | < 0.2
< 0.2
< 0.3
< 0.3 0.2*
< 0.2*
< 0.3*
< 0.3* | < 0.2*
< 0.2*
< 0.3*
< 0.3* | < 0.2
< 0.2
< 0.3
< 0.3
< 0.3 | | 5s(2-chloroethory)methane
1.2.4.Trichinenhamana | | 0.3
0.3
0.3
0.3 | < 0.3
< 0.3
< 0.06 | < 0.3
< 0.3
< 0.05 | < 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3 | < 0.3
< 0.3
< 0.3 | < 0.3 | < 0.3
< 0.3
< 0.57 | < 0.3
< 0.3
2 | < 0.3
< 0.3 | < 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.56 | < 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.3 | < 0.3 | < 0.3
< 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.3* | < 0.3*
< 0.3*
3.7* | < 0.3 | | Naphthalane
2,4-Dichlorophanol
4-Chlorophanol
Hixsachlorobutadiene | | 0.05 5.6
0.3 150
0.1
0.1 0.7
0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | 0.31
< 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | 0.49
< 0.3
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | 0.29
< 0.3
< 0.1
< 0.1 | 0.07
< 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | 0.15*
< 0.3*
< 0.1*
< 0.1* | < 0.3*
< 0.1*
< 0.1* | 23
< 0.3
< 0.1
< 0.1 | | 4-Chloro-3-methylphenol
2,4,5-Trichlorophenol
2,4,5-Trichlorophenol | | | < 0.1
< 0.1
< 0.2 0.1*
< 0.1*
< 0.2* | < 0.1*
< 0.1*
< 0.2* | < 0.1
< 0.1
< 0.2 | | 2-Methylnaphthalene
2-Chicronaphthalene
Dimethylphthalate
2,6-Christotoluene | mg/kg
mg/kg
mg/kg | 0.2 150
0.1
0.1
0.1 | < 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 0.3
< 0.1
< 0.1
< 0.1 | 0.7
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 1.4
< 0.1
< 0.1
< 0.1 | 1.4
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 0.5
< 0.1
< 0.1
< 0.1 | 1
< 0.1
< 0.1
< 0.1 | 0.5
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 0.2
< 0.1
< 0.1
< 0.1 | 1.4
< 0.1
< 0.1
< 0.1 | 1.5
< 0.1
< 0.1
< 0.1 | 0.2*
< 0.1*
< 0.1* | 1.7*
< 0.1*
< 0.1*
< 0.1* | 19
< 0.1
< 0.1
< 0.1 | | 2,6-Cinitrotoluene
Acenaphthylene
Acenaphthene
2,4-Cinitrotoluene | mg/kg
mg/kg
mg/kg | 0.1
0.1
0.05 420
0.05 510
0.2 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.05 | < 0.1
0.05
0.25
< 0.2
0.2 | < 0.1
7.8
5.8
< 0.2
4.5 | < 0.1
0.29
4.6
< 0.2
< 0.2 | < 0.1
0.23
4
< 0.2
1.6 | < 0.1
< 0.05
1.2
< 0.2 | < 0.1
< 0.05
1.3
< 0.2
0.9 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.1
0.11
0.66
< 0.2
0.5 | < 0.1
0.09
0.39
< 0.2
0.5 | < 0.1
< 0.05
0.6
< 0.2
0.4 | < 0.1
< 0.05
1.1
< 0.2
< 0.2 | < 0.1
< 0.05
0.08
< 0.2
< 0.2 | < 0.1
< 0.05
< 0.05
< 0.2
< 0.2 | < 0.1
0.33
7.1
< 0.2
3.2 | < 0.1
< 0.05
6.1
< 0.2
3.3 | < 0.1*
0.05*
0.15*
< 0.2*
< 0.2* | < 0.1*
0.19*
1.2*
< 0.2*
1.1* | < 0.1
0.34
22
< 0.2
14 | | 2,4-Christotolueria
Dibenzofuran
4-Chicrophenyl phenyl other
Diethyl phthalate | | 0.2
0.3
0.2
0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
0.2
< 0.3
< 0.2 | < 0.2
4.5
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
1.6
< 0.3
< 0.2 | < 0.2
1
< 0.3
< 0.2 | < 0.2
0.9
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
0.5
< 0.3
< 0.2
< 0.2 | < 0.2
0.5
< 0.3
< 0.2 | < 0.2
0.4
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | <0.2
<0.2
<0.3
<0.2 | < 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
3.2
< 0.3
< 0.2 | < 0.2
3.3
< 0.3
< 0.2 | < 0.2*
< 0.2*
< 0.3*
< 0.2*
< 0.2* | < 0.2*
1.1*
< 0.3*
< 0.2* | <02
14
<03
<02
<02 | | Detry promise
4-Nitrolline
Fluorene
Azoberszene | | 0.2
0.05 400
0.3 | | < 0.2
< 0.05
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.05
< 0.3 | < 0.2
< 0.2
0.22
< 0.3 | < 0.2
< 0.2
9
< 0.3 | < 0.2
< 0.2
1.8
< 0.3 | < 0.2
< 0.2
2.3
< 0.3 | < 0.2
< 0.2
1.4
< 0.3 | < 0.2
< 0.2
1.5
< 0.3 | < 0.2
< 0.05
< 0.3 | < 0.2
< 0.05
< 0.3 | < 0.2
< 0.6
< 0.3 | < 0.2
< 0.2
0.39
< 0.3 | < 0.2
< 0.2
0.69
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.2
0.05
< 0.3 | < 0.2
< 0.2
0.12
< 0.3 | < 0.2
< 0.2
4.1
< 0.3 | < 0.2
3.9
< 0.3 | < 0.2*
< 0.17*
< 0.3* | < 0.2*
0.99*
< 0.3* | <0.2
<0.2
16
<0.3 | | Accordance Broncoplenyl phenyl either Hexachlorobenzene Phenanthrene | mg/kg
mg/kg | 0.2 | < 0.2 | < 0.2
< 0.3
< 0.05 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.3
< 0.2
< 0.3
2.4 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
5.1 | < 0.2 | < 0.2 | < 0.2 | < 0.3
< 0.2
< 0.3
0.38 | < 0.2 | < 0.2 | < 0.2 | < 0.2* | < 0.2* | < 0.2 | | Anthriscene
Carbazole
Dibutyl phthalate | | 0.05 220
0.05 5400
0.3
0.2 | | < 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 1.8
0.38
< 0.3
< 0.2 | 88
52
5
< 0.2 | 1.5
< 0.3
< 0.2 | 3.3
1.3
< 0.3
< 0.2 | 2.2
0.79
< 0.3
< 0.2 | 2.1
0.86
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.3
< 0.2 | 1.2
0.3
< 0.2 | 2.7
0.74
< 0.3
< 0.2 | 2.8
0.69
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 0.09
< 0.3
< 0.2 | 0.59
0.14
< 0.3
< 0.2 | 8
2.1
< 0.3
< 0.2 | 10
2.9
0.9
< 0.2 | 0.19*
0.08*
< 0.3*
< 0.2* | 2.5*
0.66*
< 0.3*
< 0.2* | 17
3.7
< 0.3
< 0.2
< 0.3 | | Anthraquinone
Fluoranthene | mg/kg
mg/kg
mg/kg | 0.2
0.3
0.05 560
0.05 1200
0.3 | < 0.05 | < 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05 | < 0.3
2.3
2.2 | 3
200
170 | < 0.3
3.8
3.6 | < 0.3
2.8
2.8 | < 0.3
2.3
2.4 | < 0.3
2.2
2.4 | < 0.3
< 0.05
< 0.05 | < 0.3
0.35
0.66 | 0.3
5.7
5
< 0.3 | 0.3
3.7
3.4 | < 0.3
2.8
3.1
< 0.3 | < 0.3
0.87
2.7
< 0.3 | < 0.3
0.44
0.51 | < 0.3
1
1.1
< 0.3 | < 0.3
6
5.1 | < 0.3
7.5
6.5 | < 0.3*
0.19*
0.28* | < 0.3*
2.2*
2.1*
< 0.3* | < 0.3
3.6
2.4
< 0.3 |
| Butyl benzyl phthalate
Berus(a)anthracene
Chrysene | mg/kg
mg/kg | 0.05 11 | < 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
1.1
1.2 | < 0.3
98
86 | < 0.3
0.86
1.1
0.74 | < 0.3
0.79
0.74
0.63 | < 0.3
0.72
1.3
0.7 | < 0.3
0.98
1
0.87 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.11
0.2
0.16 | < 0.3
2.6
2.7
2.4 | < 0.3
2.1
2.2
2.1 | < 0.3
1.8
1.6
1.3 | < 0.3
0.37
0.61
0.58 | < 0.3
0.22
0.27
0.34 | < 0.3
0.87
0.81
0.64 | 2.4
2.4 | < 0.3
3.2
2.8
2.3 | < 0.3*
0.09*
0.23*
< 0.05* | < 0.3*
0.75*
1.1*
0.98* | < 0.3
0.93
0.81
0.74 | | Chrystene Beruto (i) fluoranthinne Beruto (i) fluoranthinne Beruto (a) pyrene Beruto (a) pyrene Bedeno (1,2,3-of) pyrene | mg/kg
mg/kg | 0.05 1.3
0.05 93
0.05 2.7
0.05 36 | < 0.05
< 0.05
< 0.05
< 0.05 | 1
0.68
1.1
0.46 | 100
40
94
46 | 0.74
0.39
0.6
0.29 | 0.63
0.4
0.6
0.28 | 0.7
0.46
0.67
0.36 | 0.87
0.29
0.69
0.35 | < 0.05
< 0.05
< 0.05
< 0.05 | 0.16
0.05
0.13
< 0.05 | 2.4
1.6
2.3
1.1 | 2.1
1.4
2.2 | 1.3
0.88
1.4
0.54 | 0.58
0.27
0.42
0.2 | 0.34
0.15
0.32
0.18 | 0.64
0.28
0.72
0.32 | 2
0.89
1.8
0.74 | 2.3
1.6
2.1
0.91 | < 0.05*
< 0.05*
< 0.05*
< 0.05* | 0.98*
0.49*
0.83*
0.39* | 0.74
0.36
0.55
0.3 | | Indeno(1,2,3-cd)pyrene
Dibera(a,h)anthracene
Berac(ghi)peryiene | mg/kg
mg/kg
mg/kg | 0.05 36
0.05 0.28
0.05 340 | < 0.05
< 0.06
< 0.06 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | < 0.05 | 0.46
0.1
0.65 | 46
9.7
53 | 0.29
0.09
0.4 | 0.28
< 0.05
0.34 | 0.36
< 0.05
0.52 | 0.35
< 0.05
0.57 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | 1.1
0.3
1.4 | 1
0.24
1.3 | 0.14 | 0.2
< 0.05
0.3 | 0.18
0.05
0.27 | 0.32
< 0.05
0.58 | 0.74
0.22
0.89 | 0.29 | < 0.05*
< 0.05*
< 0.05* | 0.39*
0.12*
0.55* | 0.3
0.1
0.42 | | | _ | | | | _ | | | _ | | | | | | | | _ | | | _ | | | | | | | BenotifyDisymphone (1)5 - Unionalizings (1)5 - Instifficient Sample (10) - Not Detected "Data reported concredible does to quality corted parenther failure "Data reported or description of the failure failu 2022 Site Investigation Summary Table 3 | Sample Reference
Depth (m) | | | ECTP6
2.00 | ECTP7
0.20 | |--|--------------------------|-----------------------|--------------------------|----------------------------------| | Analytical Parameter | Units | Limit of | | | | Analytical Parameter
(Soil Analysis) | ğ | of debt diam | | | | Stone Content | % | 0.1 | < 0.1 | 45 | | Moisture Content
Fotal mass of sample received | kg | 0.001 | 1.3 | 6.4
1.3 | | | Π | | | | | Authoritar in Golf Granco / Manelliferation Name | Time | N/A | - | - | | Asbestos in Soll Screen / Identification Name
Asbestos in Soll
Asbestos Analyst ID | Type | N/A
N/A
N/A | N/A | Not-detected
DSA | | General Inorganics | | | | | | pH - Automated
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr extraction | pH Units
gfl
mg/kg | N/A
0.00125
2.5 | 6.9
0.087 | 8.1 | | Water Soluble SO4 (2:1 Leach, Equiv.) 1hr extraction
Water Soluble SO4 (2:1 Leach, Equiv.) 1hr extraction | mg/kg
mg/l | 2.5
1.25 | 170
87.3 | | | Heavy Metals / Metalloids | | | | | | Arsenic (aqua regia extractable)
Cadmium (aqua regia extractable)
Chromium (hoxavalent) | mg/kg
mg/kg
mg/kg | 0.2 | 8.8
0.50
< 1.8 | 6.2
< 0.2
< 1.8 | | | mg/kg | 1.0 | < 1.8
19 | < 1.8
36 | | Chromium (aqua regia extractable) Copper (aqua regia extractable) Lead (aqua regia extractable) | mg/kg
mg/kg | 1 | 19
55
150 | 35
44 | | Lead (aqua regia extractable)
Mercury (aqua regia extractable)
Nickel (aqua regia extractable) | mg/kg
mg/kg | 0.3 | 1.2 | < 0.3
85 | | Selenium (aqua regia extractable)
Zinc (aqua regia extractable) | mg/kg
mg/kg | 1 | < 1.0
220 | < 1.0
140 | | Monoaromatics & Oxygenates | | | | • | | Benzene
Toluene | h0gd
h0gd | 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Ethylbenzene
p & m-xylene | haya
haya | 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | | o-xylene
MTBE (Methyl Tertiary Butyl Ether) | haya
haya | 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Petroleum Hydrocarbons | | | | | | TPH-CWG - Alphabic >ECS - ECb _{HE 10 III} | mg/kg
mg/kg
mg/kg | 0.001 | < 0.001
2.8
36 | < 0.001
< 0.001 | | TPH-CWG - Alighatic >EC10 - EC12 -u -c - m -e | mg/kg | 0.001 | 4.7 | < 0.001 | | TPH-CNG - Alphatic >EC12 - EC16 as or to a
TPH-CNG - Alphatic >EC16 - EC11 as or to a
TPH-CNG - Alphatic >EC11 - EC35 as or to a | mg/kg
mg/kg | 8 | 22
23 | 7.8
19 | | TPH-CWG - Aliphatic >EC21 - EC35 _{EX (GL 20, IL}
TPH-CWG - Aliphatic (EC5 - EC35) _{EX (GL+RL 20, IL} | mg/kg | 30 | 130 | 120 | | TPH-CWG - Aromatic >ECS - EC7 _{MI ID M} | mg/kg
mg/kg | 0.001 | < 0.001 | < 0.001 | | TPH-CWG - Aromatic >EC7 - EC8 _{101 20 AB} TPH-CWG - Aromatic >EC8 - EC10 _{101 20 AB} TPH-CWG - Aromatic >EC10 - EC12 _{201 20 AB} | mg/kg
mg/kg
mg/kg | 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001
9.3 | | TPH-CWG - Aromatic >EC12 - EC16 _{B1 CD 10} At
TPH-CWG - Aromatic >EC12 - EC16 _{B1 CD 10} At
TPH-CWG - Aromatic >EC16 - EC21 _{B1 CD 10} At | mg/kg
mg/kg | 2 10 | 11
22 | 63
170 | | TPH-CWG - Aromatic >EC.16 - EC.21 _{ER CL 20 JR} TPH-CWG - Aromatic >EC.21 - EC.35 _{ER CL 20 JR} TPH-CWG - Aromatic (EC.5 - EC.35) _{ER CL 10 JR} | mg/kg
mg/kg | 10 | 38
72 | 320
560 | | VOCs | | | | | | Chloromethane
Chloroethane | haya
haya | 5 | < 5.0
< 5.0 | | | Bromomethane
Vinyl Chloride | hāyā
hāyā | 5 | < 5.0
< 5.0 | - | | Trichlorofluoromethane
1,1-Dichloroethene | haysa
haysa | 5 | < 5.0
< 5.0 | - | | 1,1,2-Trichloro 1,2,2-Trifluoroethene
Cis-1,2-dichloroethene | haysa
haysa | 5 | < 5.0
< 5.0 | - | | MTBE (Methyl Tertiary Butyl Ether)
1,1-Dichloroethane | haya
haya | 5 | < 5.0
< 5.0 | : | | 2,2-Dichloropropane
Trichloromethane | hays
hays | 5 | < 5.0
< 5.0 | - : | | 1,1,1-Trichloroethane
1,2-Dichloroethane
1,1-Dichloropropene | hāyā
hāyā | 5 5 | < 5.0
< 5.0
< 5.0 | | | 1,1-Dichoropropene
Trans-1,2-dichloroethene | haya | 5 | < 5.0 | | | Tetrachioromethane | haya
haya | 5 | < 5.0
< 5.0
< 5.0 | | | 1,2-Dichloropropane
Trichloroethene
Dibromomethane | haya | 5 | < 5.0
< 5.0 | - : | | Bromodichloromethane | haya
haya | 5 | < 5.0
< 5.0 | | | Cis-1,3-dichloropropene
Trans-1,3-dichloropropene
Toluene | haya
haya | 5 | < 5.0
< 5.0 | | | 1,1,2-Trichloroethane
1,3-Dichloropropane | haysa | 5 | < 5.0
< 5.0 | - | | Dibromochloromethane
Tetrachloroethane | haya
haya | 5 | < 5.0
< 5.0 | : | | 1,2-Dibromoethane
Chlorobenzene | hays | 5 5 | < 5.0
< 5.0 | - : | | 1,1,1,2-Tetrachlorosthane
Ethylbenzene
p & m-Xylene | haya | 5 | < 5.0
< 5.0
< 5.0 | - | | Styrene
Tribromomethane | hays
hays | 5 | < 5.0 | | | o-Xylene
1,1,2,2-Tetrachloroethane | haya
haya | 5 | < 5.0
< 5.0
< 5.0 | | | Sopropy/benzene
Bromobenzene | haya
haya | 5 | < 5.0
< 5.0 | | | n-Propylbenzene
2-Chlorotoluene | hays | 5 | < 5.0 | | | 4-Chlorotoluene
1,3,5-Trimethylbenzene | haya
haya | 5 | < 5.0
< 5.0
< 5.0 | | | tert-Butylbenzene
1,2,4-Trimethylbenzene | haya
haya | 5 | < 5.0
< 5.0 | | | sec-Buty/benzene
1,3-Dichlorobenzene | haya | 5 | 130
< 5.0 | | | p-Isopropyltoluene
1,2-Dichloroberzone | haya
haya
haya | 5 | < 5.0
< 5.0
< 5.0 | | | 1,4-Dichlorobenzene
Butylbenzene
1,2-Dibromo-3-chloropropane | haya
haya | 5 | < 5.0
< 5.0 | | | 1.2.4-Trichlorobensene | haya
haya
haxa | 5 | < 5.0
< 5.0
< 5.0 | | | Hosachiorobutadiene
1,2,3-Trichlorobenaene | haya
haya | 5 | < 5.0 | | | SVOCs
Anline | mg/kg | 0.1 | < 0.1 | 0.2 | | Phenal
2-Chlorophenal | mg/kg
mg/kg | 0.2 | < 0.2 | < 0.2 | | Bis(2-chloroethyl)ether
1,3-Dichlorobenzene | mg/kg
mg/kg | 0.2 | < 0.2
< 0.2
< 0.1 | < 0.2
< 0.2
< 0.1 | | 1,2-Dichlorobenzene
1,4-Dichlorobenzene | mg/kg
mg/kg | 0.1 | < 0.2 | < 0.2 | | Bis(2-chloroisogropyl)ether
2-Methylphenol
Hissachloroithane | mg/kg
mg/kg | 0.1 | < 0.1
< 0.3
< 0.05 | < 0.1
< 0.3
< 0.05 | | Nitrobenzene | mg/kg
mg/kg
mg/kg | 0.05 | < 0.3 | < 0.3 | | Sophorone
2 Alternatural | mg/kg
mg/kg | 0.2
0.2
0.3 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | | 2-Nitrophenol
2,4-Dimethylphenol
8si(2-chicrosthosy)methane | mg/kg
mg/kg | 0.3 | | < 0.3
< 0.3
< 0.3
< 0.3 | | | mg/kg | 0.3 | <0.3
<0.3
<0.3 | 5.5 | | Naphthalene
2,4-Dichlorophenol
4-Chloroaniline | mg/kg
mg/kg
mg/kg | 0.05
0.3
0.1 | < 0.3 | < 0.3 | | Hexachlorobutadiene
4-Chloro-3-methylphenol | mg/kg
mg/kg | 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | | 2,4,5-Trichlorophenal
2,4,5-Trichlorophenal | mg/kg
mg/kg | 0.2 | < 0.1 | < 0.2 | | 2-Methylnaphthalene
2-Chloronaphthalene | mg/kg
mg/kg | 0.1 | 2.6
< 0.1 | 8.5
< 0.1 | | Dimethylphthalate
2,6-Dinitrotoluene
Acenaphthylene | mg/kg
mg/kg
mg/kg | 0.1 | < 0.1
< 0.1
0.13 | < 0.1
< 0.1
0.23 | | Acenaphthene
2.4-Dinitrotoluene | mg/kg
mg/kg | 0.05 | 2.9
< 0.2 | < 0.2 | |
2,4-Onstrotoluene
Dibenzofuran
4-Chlorophenyl phenyl ether | mg/kg
mg/kg | 0.2 | < 0.2
1.9
< 0.3 | < 0.2
5.3
< 0.3 | | 4-Chicrophenyl phenyl ether Diethyl phthalate 4-Nitroaniline | mg/kg
mg/kg | 0.2 | < 0.2
< 0.2 | < 0.3
< 0.2
< 0.2 | | Fluorene | mg/kg | 0.05 | 2.8 | 7.5 | | Bromophenyl phenyl ether
Hexachlorobenzene | mg/kg
mg/kg | 0.3
0.2
0.3 | < 0.3
< 0.2
< 0.3 | < 0.3
< 0.2
< 0.3 | | Phenanthrene
Anthracene | mg/kg
mg/kg | 0.05 | 4 | 54 | | Carbazole
Dibutyl phthalate | mg/kg | 0.3 | 1.7
0.3
< 0.2 | 12
2.8
< 0.2 | | Anthraquinone
Fluoranthene | mg/kg
mg/kg
mg/kg | 0.05 | < 0.2
0.3
2.6 | < 0.2
3.6
40 | | Pyrene
Butyl benzyl phthalate | mg/kg
mg/kg | 0.05 | 2.1
< 0.3 | 43
< 0.3 | | Berzo(a)anthracene
Chrysene | mg/kg
mg/kg | 0.05 | 0.84 | 18
15
16 | | Senzo(k)fluoranthene | mg/kg
mg/kg
mg/kg | 0.05 | 0.69 | 6.9 | | | | 3.05 | 0.58 | 16 | | Benzo(a)pyrene
Indeno(1,2,3-cd)pyrene
Dibenz(a,h)anthracene | mg/kg
mg/kg | 0.05 | 0.32 | 6.6
1.7 | U/S — Unsuitable Sample I/S — Insufficiert Sample ND — Not Detected *Data reported unaccredited due to quality cortrol parameter failure associated with the result; other checks applied prior to specifiery the data have been accepted and the fallows justified as having no significant impact on sample data operation. **Over range data, sample wise diluted and results are estimated form an extrapolished callerion. Results should be interpreted with care. | Mary Column | Sample Reference | | | ECTP7 | ECTP7 | ECTP7 | ECTP8 | ECTP8 | ЕСТРВ | ECTP8 | |--|--|-------------------------|-------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------------------------------| | Marchander | Depth (m) | | Limit | 0.50 | 1.50 | | 0.20 | 0.50 | 1.50 | 3.00 | | Second common | Analytical Parameter
(Soil Analysis) | Units | t of deba | | | | | | | | | Section Property | Stone Content | 16 | | < 0.1 | 30 | 46 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Section Property Section 1965 | | %
kg | 0.01 | 11
1.3 | 13
1.3 | | | | | < 0.1
10
1.3 | | Section Property Section 1965 | | | | | | | | America Learn | | | | Section 1985 10 | Asbestos in Soil Screen / Identification Name | Type | N/A | - | | | - | Fibres | - | | | March 1965 | Asbestos in Soll
Asbestos Analyst ID | Type
N/A | N/A
N/A | Not-detected
DSA | N/A | N/A | Not-detected
DSA | Detected
DSA | N/A | N/A | | Margin M | General Inorganics
pH - Automated | pH Units | N/A | 8.5 | 8.4 | 8.5 | 7.7 | 8.2 | 7.9 | 7.1 | | Company | Water Soluble SO4 (2:1 Leach, Equiv.) 1hr extraction | mg/kg | 2.5 | 35 | | 180 | - : | 17 | - : | 0.0064 | | Section of manufaction | Heavy Metals / Metalloids | mgri | 1.25 | 17.6 | - | 87.8 | - | 8.7 | - | 6.4 | | Section 1979 1.0
1.0 | Arsenic (aqua regia extractable)
Cadmium (aqua regia extractable) | | 0.2 | < 0.2 | | < 0.2 | < 0.2 | 7.7
< 0.2 | 7.1
< 0.2 | 6.8 | | Section of monessed 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, | Chromium (Nosevalent)
Chromium (III) | | 1.6 | 12 | 10 | 9.9 | 36 | 27 | 29 | < 1.8
31
32 | | SEACH | Copper (aqua regia extractable)
Lead (aqua regia extractable) | | 1 | 27 | 43
24 | 54
54 | 11
33 | 18
61 | 15
34 | 40 | | New | Nickel (aqua regia extractable) | mg/kg
mg/kg | 0.3 | 12 | 13 | 12 | 43 | 38 | 38 | 0.3
37
< 1.0 | | Section | Zinc (aqua regia extractable) | mg/kg | i | | | | | | | 91 | | Management April 1. 1. 1. 1. 1. 1. 1. 1 | Monoaromatics & Oxygenates
Serzene | | 5 | | | | | | | < 5.0 | | William Will | | högsä | 5 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | Modern Applies Mode | o-xylene | hays
hays | 5 | < 5.0
< 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | | Modern M | Petroleum Hydrocarbons | | | | | | | -0.00 | | 0.004 | | Modern M | TPH-CWG - Aliphatic >EC6 - EC8 _{HE, 10, I6}
TPH-CWG - Aliphatic >EC8 - EC10 _{HE, 10, I6} | mg/kg
mg/kg | 0.001 | < 0.001
< 0.001
< 0.001 | | Modern Control Mode | TPH-CWG - Aliphatic >EC10 - EC12 _{IN CR. 2D, AL}
TPH-CWG - Aliphatic >EC12 - EC16 _{IN CR. 2D, AL} | mg/kg
mg/kg | 1 2 | < 1.0
< 2.0 | 5.9
17 | 6.4
14 | < 1.0
< 2.0 | < 1.0 | < 1.0
< 2.0 | < 1.0
< 2.0 | | March Marc | TPH-CNG - Aliphatic >EC16 - EC21 _{IN CU ID AL} TPH-CNG - Aliphatic >EC21 - EC35 _{IN CU ID A} | mg/kg
mg/kg
mg/kr | 8 8 | < 8.0 | < 8.0 | < 8.0 | < 8.0
< 8.0 | 11
69 | < 8.0 | < 8.0
12
12 | | Miles | TPH-CWG - Aromatic >ECS - EC7 HS ID AS | | 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | The content of | TPH-CWG - Aromatic >EC7 - EC8 _{HL 10 M}
TPH-CWG - Aromatic >EC8 - EC10 _{HL 10 M} | mg/kg
mg/kg | 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | < 0.001 | < 0.001
< 0.001 | < 0.001 | | Proceed | TPH-CWG - Aromatic > EC10 - EC12 _{EN COLUD} AT
TPH-CWG - Aromatic > EC12 - EC16 _{EN COLUD} AN
TPH-CWG - Aromatic > EC16 - EC21 | | 2 10 | < 1.0
< 2.0
< 10 | | < 2.0 | < 1.0
< 2.0
< 10 | | December 198 1 | TPH-CWG - Aromatic >EC21 - EC35 ps cu 10 ps | mg/kg | 30 | < 10 | < 10 | < 10 | < 10 | 43 | < 10 | < 10
< 10
< 10 | | Secondaria | vocs | | | | | | | | | | | Description | Chloroethane
Bromomethane | haya
haya
haya | 5 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1-0501000000000000000000000000000000000 | Vinyl Chloride
Trichlorofluoromethane | hāķā | | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | ## PRINTED FROM TWO TO A 1 | 1,1,2-Trichloro 1,2,2-Trifluoroethane | högg
högg | 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Collections | MTBE (Methyl Tertiary Butyl Ether) | H0/kg | 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0 | | The Content of | 2,2-Dichloropropane
Trichloromethane | halea | 5 | < 5.0 | < 5.0 | < 5.0 | : | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | The Content of | 1,1-Trichloroethane
1,2-Dichloroethane | haysa
haysa | 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1.50016999999 | Trans-1,2-dichloroethene
Benzene | haya
haya
haxa | - 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Proceedings | | haya
haya | 5 | < 5.0 | < 5.0
< 5.0 | < 5.0 | | < 5.0 | < 5.0
< 5.0 | < 5.0 | | \$1.50 \$1.5 | Dibromomethane | haya
haya | 5 | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | The content | Cis-1,3-dichloropropene | haya
haya
haya | 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0 | | Securations | Toluene
1,1,2-Trichloroethane | haya
haya | 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Descriptions | Lui-uscrioropropane
Dibromochloromethane
Tetrachloroethene | hājgā
hājgā | 5 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | Propose | Chlorobenzene | haya | 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Press | Ethylbenzene | haya
haya | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1.1.2 1.1. | Styrene
Tribromonethane | haya
haya
haya | - 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Schepholes | | | 5 | | < 5.0 | < 5.0 | | < 5.0 | | < 5.0 | | 1,15
1,15 | Sromobenzene | haysa
haysa
haysa | 5 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | - | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,15 | 4-Chlorotoluene | haya
haya | 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | Applications | sert-Buty/berzene | hales | 5 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0 | | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Secondarian | sec-Buty/benzene | hales | 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | Definition | p-Isopropyltokene
1,2-Dichlorobenzene | hājgā
hājgā | 5 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0
< 5.0 | | 2.64 International | 8utybenzene
1,2-Dibromo-3-chloropropane | haya | 5 | < 5.0
< 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | Description | 1,2,4-Trichloroberozene
Hexachlorobutadiene | höyö
höyö | - 5 | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Description | | hByd | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | Chambridge | | mg/kg
mg/kg | 0.1 | < 0.1
< 0.2 | < 0.1
< 0.2 | 0.5
< 0.2 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1
< 0.2 | | Accomplement | 2-Chlorophenol
Bis(2-chloroethyl)ether | mg/kg | 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.2 | < 0.1 | < 0.1 | < 0.1 | | Big Comment | 1,2-Dichlorobenzene
1,4-Dichlorobenzene | mg/kg
mg/kg | 0.1 | < 0.2 | < 0.2 | ≠0.2 | < 0.1 | | | < 0.2
< 0.1
< 0.2 | | Section Sect | Bis(2-chloroisopropyl)ether
2-Methylphenol | mg/kg
mg/kg | 0.1 | < 0.1
< 0.3 | < 0.1
< 0.3
< 0.05 | | Designation Color | Nitrobenzene | | 0.3 | | | | < 0.05 | < 0.05 | | | | Part | | mg/kg
mg/kg | 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | | Section | Sis(2-chloroethoxy)methane | udly8 | 0.3 | < 0.3 | < 0.3 | | < 0.3 | < 0.3 | < 0.3 | < 0.3
< 0.3
< 0.3 | | Numberdelinder | Naphthalene | | 0.05 | < 0.3
0.05 | < 0.3
0.08
< 0.3 | < 0.3
0.06
< 0.3 | < 0.3 | < 0.05 | < 0.05 | < 0.3
< 0.05
< 0.3 | | Education | 4-Chloroaniline
Hexachlorobutadiene | mg/kg
mg/kg | 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1 | | Debugstations | | mg/kg | 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.1 | | Descriptions | 2-Methylnaphthalene
2-Methylnaphthalene | mg/kg | 0.1 | < 0.1 | < 0.2
< 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.2
< 0.1
< 0.1 | | Secretable | Dimethylphthelate
2,6-Dinitrotoluene | mg/kg
mg/kg | 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1 | | Consideration of the Conside | Acenaphthylene
Acenaphthene | | | < 0.05 | < 0.05 | | < 0.05 | < 0.05 | < 0.05 | < 0.05 | | Administration | Diberapfuran | mg/kg | 0.2 | < 0.2
< 0.2
< 0.3 | < 0.05
< 0.2
< 0.2
< 0.3 | | Parent | Diethyl phthalate
4-Nitroaniline | udly8 | 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.3
< 0.2
< 0.2 | | Numberholstone | | mg/kg | 0.05
0.3 | | | | | < 0.06 | | < 0.05
< 0.3
< 0.2 | | Annieste | Hesachlorobenzene Phenanthrene | | | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.2
< 0.3
< 0.05 | | Shade plane Shade | Anthracene
Carbazole | mg/kg
mg/kg | 0.05 | < 0.05 | < 0.3 | < 0.05 | < 0.05 | < 0.3 | < 0.05 | < 0.05 | | Press | Anthraquinone | mg/kg
mg/kg | 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.3
0.1 | | Bend Definition Perf 255 615 613 613 611 606 644 620 6 9 | Pyrene
Butyl benzyl phthalate | mg/kg | 0.05 | < 0.3 | < 0.3 | 0.2
< 0.3 | < 0.3 | 1.1 | 0.16
< 0.3 | 0.1
< 0.3 | | | Benzo(a)anthracene
Chrysene | | 0.05 | 0.15 | 0.13 | 0.11 | 0.06 | 0.44 | 0.09 | 0.07
< 0.05
0.07 | | Diberg(a,h)anthracene mg/kg 0.05 < 0.05 < 0.05 < 0.05 < 0.05 < | Benzo(k)fluoranthene | ma/ka | 0.05 | 0.08 | 0.1 | 0.08 | < 0.05 | 0.2 | 0.06 | < 0.05 | | Berus(shi)perviene mg/kg 0.05 0.09 0.12 0.1 <0.05 0.53 0.4 | Oiberz(a,h)anthracene | | | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.06 | < 0.05 | < 0.05
< 0.05 | | | Benzo(ghi)perylene | • | | 0.09 | 0.12 | 0.1 | < 0.05 | 0.33 | 0.1 | < 0.05 | U/S – Unsuitable Sample 1/S – Insufficient Sample 10 – Not Detected "Oats reported unaccredated date to quality control parameter failure associated with this result; other checks applied prior to specifier the date have been accepted and the fallow positive of propriet pro significant impact in sample date reported. Accided and how the control of ""Over range date, sample was did total and results are estimated from an extrapolated allowance. Natural should be interpreted with care. | 2022 Site Investigation Summary Table 1 |--|---|------------------------------|---|---|-----------------------------------|--|---------------------------------------|---------------------------------------|-----------------------------------|--------------------------------------|---|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|-----------------------------------|--
---|-----------------------------------|---|--------------------------------------|---|--| | Sample Reference
Depth (m) | L L | 0.20 | 0.50 | ECTP9
1.50 | 3.00 | ECTP10
0.20 | ECTP10
0.50 | ECTP10
1.50 | ECTP10
3.00 | ECTP11
0.20 | BCTP11
0.50 | ECTP11
1.50 | ECTP11
3.00 | ECTP12
0.20 | ECTP12
0.50 | ECTP12
1.50 | ECTP12
3.00 | ECTP13
0.20 | ECTP13
0.50 | ECTP13
1.50 | ECTP13
3.00 | ECTP14
0.20 | ECTP14
0.50 | ECTP14
1.50 | BCTP14
3.00 | | Analytical Parameter
(Soil Analysis) | Units | Stone Content
Moisture Content
Total mass of sample received | % 0.1
% 0.01
kg 0.001 | < 0.1
10
1.3 | < 0.1
11
1.3 | < 0.1
23 | < 0.1
23
1.3 | 30
11
1.3 | 43
10 | < 0.1
15
1.3 | < 0.1
18
1.3 | < 0.1
11
1.3 | < 0.1
10
1.3 | < 0.1
11
1.3 | < 0.1
10
0.3 | < 0.1
7.3
1.3 | 29
7.6 | < 0.1
16 | < 0.1
9.5 | < 0.1
13
0.8 | < 0.1
15
0.8 | < 0.1
16
0.8 | < 0.1
16
1.3 | < 0.1
19 | < 0.1
9.6
1.3 | < 0.1
8.7 | < 0.1
11
1.3 | | | | | | | | Amosite,
Crocidolite- Loose
Fibres | | | | | | | | | | | | | | - | | | | | | | Asbestos in Soil Screen / Identification Name
Asbestos in Soil
Aubestos Analyst ID | Type N/A
Type N/A
N/A N/A | Not-detected
DSA | | N/A | | | Not-detected
DSA | - N/A | N/A | Not-detected
S2S | | -
N/A | N/A | Not-detected
SZS | Not-detected
S2S | N/A | N/A | Not-detected
S2S | | | N/A | Not-detected
SZS | Not-detected
S2S | N/A | N/A | | General Inorganics | Tel Debi NA | 71 | 6.7 | 7.4 | 7.0 | 7.9 | | 8.2 | | 8.4 | 22 | 8.5 | 7.0 | 8 | 70 | 7.6 | | 70 | | 7.9 | 7.7 | 7.9 | 91 | 7.9 | 7.8 | | pH - Automated
Water Soluble SO4 (2:1 Leach, Equiv.) Thr extraction
Water Soluble SO4 (2:1 Leach, Equiv.) Thr extraction
Water Soluble SO4 (2:1 Leach, Equiv.) Thr extraction | gf 0.00125
mg/kg 2.5
mg/l 1.25 | | 0.0045
9
4.5 | - | 0.081
160
81.2 | - | 8.3
0.009
18
9 | | 8.2
0.017
33
16.6 | | 0.0032
6.3
3.2 | | 0.0042
8.4
4.2 | | 0.0071
14
7.1 | | 0.0033
6.5
3.3 | | 8.5
0.032
64
32.1 | | 0.078
160
77.5 | | 0.035
69
34.6 | - | 0.076
150
76.4 | | Heavy Metalis / Metalloids
Arienic (aqua regia estractable)
Cadmium (aqua regia estractable) | mg/kg 1
mg/kg 0.2
mg/kg 1.6 | 7.6
< 0.2 | 8.2
< 0.2 | 9.4
< 0.2 | 11
< 0.2 | 11
0.50 | 6.7 | 6.4 | 5.8
< 0.2 | 9.7
< 0.2 | 5.9
< 0.2 | 6.8 | 6.9 | 7.1
< 0.2 | 6 < 0.2 | 13
< 0.2 | 5.4
< 0.2 | 9.2 | 20
1.00 | 18
1.10 | 4.7 | 9.4 | 5.3
< 0.2 | 5.8 | 5.4
< 0.2
< 1.8 | | Chromium (III) Chromium (III) Chromium (III) | mg/kg 1.6
mg/kg 1
mg/kg 1 | < 1.8
34
35 | < 1.8
34
34 | < 1.8
39
39 | < 1.8
39
40 | < 1.8
19
19 | <18
11
11 | < 1.8
13
14 | < 1.8
15
15 | < 1.8
29
29 | <1.8
24
24 | < 1.8
28
28 | < 1.8
28
28 | < 1.8
22
22 | < 1.8
27
27 | < 1.8
23
24 | < 1.8
22
22 | < 1.8
26
26 | < 1.8
25
26 | < 1.8
26
26 | < 1.8
31
31 | < 1.8
23
24 | < 1.8
27
27 | < 1.8
26
26 | < 1.8
25
25 | | Copper (aqua regia extractable)
Lead (aqua regia extractable)
Mercury (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 0.3 | 11
< 0.3 | 4.8
10
< 0.3 | 4.6
9
< 0.3 | 4.8
12
< 0.3 | 51
140
< 0.3 | 35
62
< 0.3 | 9.6
20
< 0.3 | 13
17
< 0.3 | 18
69
0.4 | 4.5
17
< 0.3 | 3.3
27
< 0.3 | 3.5
26
< 0.3 | 9
31
0.3 | 5.4
17
< 0.3 | 72
230
1
38 | 3.7
8.1
< 0.3 | 66
230
0.8 | 120
430
1.1 | 94
360
0.5 | 3.2
13
< 0.3 | 41
160
0.9 | 2.8
7.4
< 0.3 | 10
< 0.3 | 7.5
14
< 0.3 | | Nickel (aqua regia extractable)
Selenium (aqua regia extractable)
Zinc (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 1 | 41
< 1.0
49 | 40
< 1.0
44 | 46
< 1.0
43 | 45
< 1.0
50 | 44
< 1.0
220 | 23
< 1.0
86 | 13
< 1.0
35 | 15
< 1.0
35 | 39
< 1.0
74 | 31
< 1.0
36 | 33
< 1.0
35 | 34
< 1.0
36 | 26
< 1.0
48 | 33
< 1.0
41 | 38
< 1.0
290 | 25
< 1.0
32 | 39
< 1.0
320 | 61
< 1.0
590 | 51
< 1.0
390 | 35
< 1.0
32 | 34
< 1.0
190 | 32
< 1.0
30 | 31
< 1.0
36 | 33
< 1.0
49 | | Monoaromatics & Oxygenates
Senzene
Tolume | μg/kg 5
μg/kg 5 | < 5.0
< 5.0 5.0
< 5.0 | < | Ethylbenzene
g & m-xyleine
o-xyleine | µg/kg 5
µg/kg 5
µg/kg 5 | < 5.0
< 5.0
< 5.0 5.0 | < 5.0
< 5.0
< 5.0 | | MTBE (Nethyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Aliphatic NECS - ECG 100 100 10. | para s | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | | T9H-CNG - Alphatic >EC6 - EC8 _{M, 10, 16}
T9H-CNG - Alphatic >EC8 - EC10 _{M, 10, 16}
T9H-CNG - Alphatic >EC10 - EC12 _{M, 11, 10, 16} | mg/kg 0.001
mg/kg 0.001
mg/kg 0.001
mg/kg 1 | | < 0.001
< 0.001
< 1.0 | < 0.001
0.097
4.3 | < 0.001
0.035
< 1.0 | < 0.001
< 0.001
< 1.0 | 0.77
1.2
150 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
2.7 | 22**
270**
330 | < 0.001
< 0.001
< 1.0 | | TPH-CWG - Alphatic > EC12 - EC16 _{M Cl 10 A}
TPH-CWG - Alphatic > EC16 - EC11 _{M Cl 10 A}
TPH-CWG - Alphatic > EC11 - EC35 _{M Cl 10 A}
TPH-CWG - Alphatic (EC5 - EC35) _{M Cl 10 A} | mg/kg 2
mg/kg 8
mg/kg 8 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
20 | < 2.0
< 8.0
9.8 | 22
17
< 8.0 | 4.7
< 8.0
< 8.0
14 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | 3200
7200
7000
18000 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
12
16 | < 2.0
21
120
140 | 11
25
130
170 | 1900
2000
850
5400 | 3.5
20
57 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | | TPH-CWG - Alphatic (ECS - EC35) _{BI, GE+HE, ID, AL} . TPH-CWG - Aromatic >ECS - EC7 _{FIL ID, AL} TPH-CWG - Aromatic >EC7 - EC8 _{341 30 AL} | mg/kg 0.001
mg/kg 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 0.001 | | < 0.001
< 0.001 | TPH-CWG - Aromatic >EC8 - EC10 _{-RC,10,85}
TPH-CWG - Aromatic >EC10 - EC12 _{-RC,01,85,85}
TPH-CWG - Aromatic >EC12 - EC16 _{-RC,01,10,85} | mg/kg 0.001
mg/kg 0.001
mg/kg 1
mg/kg 2 | | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
2
11 | < 0.001
< 1.0
4 | 0.016
2.4
24
20 | 0.028
1.9
8
< 10 | < 0.001
< 1.0
< 2.0 | < 0.001 | < 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
1.5
4.6 | 13
91
910 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10 | | TPH-CWG - Aromatic >EC16 - EC21 _{ER CL ED, ME}
TPH-CWG - Aromatic >EC21 - EC35 _{ER CL ED, ME}
TPH-CWG - Aromatic (EC5 - EC35) _{ER CL-ER, ED, ME} | mg/kg 2
mg/kg 33
mg/kg 33
mg/kg 33 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
13 | 29
67
110 | 19
67
90 | 20
< 10
53 | < 10
< 10
21 | < 10
< 10
< 10 | 1900
7600
11000
20000 | < 10
< 10
< 10 | < 10
13
13 | < 10
82
88 | < 10
75
88 | 1300
710
3000 | < 10
56
63 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | | VOCs
Chloromethane
Chloroethane | µg/kg 5
µg/kg 5 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Bromomethane Viryl Chloride Trichforofibaromethane 1,1-Dichforoethene | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,1,2-Trickloro 1,2,2-Triflucroethane
Cis-1,2-dickloroethane
N'BE (Methyl Tertiary Butyl Ether) | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | 1,1-Dichloroethane
2,2-Dichloropropane
Trichloromethane | µg/kg 5
µg/kg 5
µg/kg 5 | - : | < 5.0
< 5.0
<
5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,1,1-Trichiscosthane 1,2-Dichlorosthane 1,1-Dichlorosthane Trans-1,2-dichlorosthane | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Senzene
Tetrachloromethane
1,2-Dichloropropane | µg/kg 5
µg/kg 5
µg/kg 5
µg/kg 5 | - : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Trichloroidhene
Dibromomethane
Bromodichloromethane | | | < 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | Cis-1,3-dichloropropene
Trans-1,3-dichloropropene
Tolame
1,1,2-Trichloroethane | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,3-Dichloropropane
Dibromochloromethane
Tetrachloroethane | haya 2
haya 2 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,2-Obromoethane Chlorobersane 1,1,2-Tetrachloroethane Othybersane | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | p & m-Xylene
Styrene
Tribromomethane | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | o Xylene
1,1,2,2-Tetrachloroothane
1,00propylbenzene
Bromobleszene | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | n-Propylbenzene
2-Chlorotoluene
4-Chlorotoluene | paka 5
paka 5
paka 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | 20
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,3,5-Trimethy/benzene
ten-8uty/benzene
1,2,4-Trimethy/benzene
sec-Buty/benzene | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
15 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
29000
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,3-Dichlorobenzene
p-Isopropyltohene
1,2-Dichlorobenzene | paka 5
paka 5
paka 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,4-Dichlorobenzene
Butybenzene
1,2-Oibromo-3-chloropropane | | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Horsechilorobutadiene
1,2,3-Trichlorobutadiene | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | SVOCs
Anline
Phenol | | | < 0.1 | < 0.1
< 0.2 | | | < 0.1
< 0.2 | | | | | | < 0.1
< 0.2 | < 0.1 | | | < 0.1 | | | < 0.1*
< 0.2* | | < 0.1
< 0.2 | < 0.1
< 0.2 | | < 0.1 | | 2-Chicropherol
Bis(2-chicrosthyl)ether
1,3-Dichlorobenzene
1,2-Dichlorobenzene | mg/kg 0.1
mg/kg 0.2
mg/kg 0.2
mg/kg 0.1 | < 0.2 | < 0.1
< 0.2
< 0.2
< 0.1 0.1*
< 0.2*
< 0.2*
< 0.1* | < 0.1
< 0.2
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1 | < 0.1°
< 0.2°
< 0.2°
< 0.1° | < 0.1*
< 0.2*
< 0.2*
< 0.1* | < 0.1
< 0.2
< 0.2
< 0.1 | | 2. A Childrechmans 1. A Childrechmans 16. Childrechman 1 | mg/kg 0.2
mg/kg 0.1
mg/kg 0.3 | < 0.2
< 0.1
< 0.3
< 0.05 | < 0.2
< 0.1
< 0.3 0.3
< 0.06 | < 0.2*
< 0.1*
< 0.3* | < 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.3 | < 0.2*
< 0.1*
< 0.3* | < 0.2*
< 0.1*
< 0.3* | < 0.2
< 0.1
< 0.3 | | rissachloroethane
Nitroberzeine
4-Methylphenol | mg/kg 0.05
mg/kg 0.3
mg/kg 0.2
mg/kg 0.2 | < 0.05 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
<
0.2
< 0.2 | < 0.3 | < 0.05
< 0.3
< 0.2
< 0.2 0.05*
< 0.3*
< 0.2*
< 0.2* | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2 | < 0.05*
< 0.3*
< 0.2*
< 0.2* | < 0.05*
< 0.3*
< 0.2*
< 0.2* | < 0.05
< 0.3
< 0.2
< 0.2 | | Sophorone 2-Ntrophenol 2,4-Dimethylphenol 867-2-Hornethynylmethane | mg/kg 0.3
mg/kg 0.3
mg/kg 0.3 | < 0.3 | < 0.3
< 0.3
< 0.3 | <0.2
<0.3
<0.3
<0.3 | < 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | <0.2
<0.3
<0.3
<0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.3*
< 0.3* | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2*
< 0.3*
< 0.3* | < 0.2°
< 0.3°
< 0.3°
< 0.3° | < 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | | 1,2,4-Trichloroberszene
Klaphthalene
2,4-Dichlorophenol
4-Chlorosaniline | mg/kg 0.3
mg/kg 0.05
mg/kg 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
0.33
< 0.3 | < 0.3
0.21
< 0.3 | < 0.3
0.52
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.3
< 0.05
< 0.3 | < 0.3*
< 0.3*
1.3*
< 0.3* | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3*
0.55*
< 0.3* | < 0.3*
0.27*
< 0.3* | < 0.3
< 0.05
< 0.3 | < 0.3
0.11
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3 | | Hexachiorobutadiene
4-Chioro-3-methylphenol | mg/kg 0.1
mg/kg 0.1
mg/kg 0.1 | < 0.1
< 0.1
< 0.1*
< 0.1*
< 0.1* | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1°
< 0.1°
< 0.1° | < 0.1°
< 0.1°
< 0.1° | < 0.1
< 0.1
< 0.1 | | 2,4,6-Trichlorophenal
2,4,5-Trichlorophenal
2-Midthylnaphthalene
2-Chloronaphthalene | mg/kg 0.1
mg/kg 0.2
mg/kg 0.1
mg/kg 0.1 | < 0.2
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1 | < 0.1
< 0.2
0.3
< 0.1 | < 0.1
< 0.2
0.4
< 0.1 | < 0.1
< 0.2
7
< 0.1 | < 0.1
< 0.2
2.3
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1 | < 0.1*
< 0.2*
3.6*
< 0.1* | < 0.1
< 0.2
< 0.1
< 0.1 | < 0.1
< 0.2
0.2
< 0.1 | < 0.1°
< 0.2°
0.6°
< 0.1° | < 0.1°
< 0.2°
0.4°
< 0.1° | < 0.1
< 0.2
7.1
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1 | | Dimethylphthalate
2,6-Dinitrotoluene | mg/kg 0.1
mg/kg 0.1
mg/kg 0.05 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.05 | < 0.1
< 0.1
0.18 | < 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.05 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1°
< 0.1° | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1*
< 0.1* | < 0.1*
< 0.1* | < 0.1
< 0.1
< 0.05 | < 0.1
< 0.1 | < 0.1
< 0.1
< 0.05 | < 0.1 | < 0.1
< 0.1 | | Aconaphthylene Aconaphthene 2,4-Onitrotoloine Dibenaciusan 6,5-Norobland sharel ather | mg/kg 0.05
mg/kg 0.2
mg/kg 0.2
mg/kg 0.3 | | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | 0.72
< 0.2
0.6 | 0.29
< 0.2
0.2 | 1.8
< 0.2
1.3 | 0.56
< 0.2
0.5 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05*
< 0.05*
< 0.2*
< 0.2* | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | 0.06*
< 0.2*
0.3* | < 0.05*
< 0.2*
< 0.2* | 6
< 0.2
2.9 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | | 4-Chlorophenyl phenyl ether
Diethyl phthalate | mg/kg 0.3
mg/kg 0.2
mg/kg 0.2
mg/kg 0.25 | < 0.2 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
0.8 | < 0.3
< 0.2
< 0.2
0.33 | < 0.3
< 0.2
< 0.2
1.6 | < 0.3
< 0.2
< 0.2
0.57 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.06 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3*
< 0.2*
< 0.2* | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3*
< 0.2*
< 0.2*
0.07* | < 0.3*
< 0.2*
< 0.2*
0.12* | < 0.3
< 0.2
< 0.2
5.1 | < 0.3
< 0.2
< 0.2
< 0.05 | | Azoberazine
Bromophenyl phenyl ether
Neoschlorobenzene | mg/kg 0.3
mg/kg 0.2
mg/kg 0.3 | < 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.8
< 0.3
< 0.2
< 0.3 | 0.33
< 0.3
< 0.2
< 0.3 | 1.6
< 0.3
< 0.2
< 0.3 | 0.57
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 4.4*
< 0.3*
< 0.2*
< 0.3* | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.2 | 0.07*
< 0.3*
< 0.2*
< 0.3* | 0.12*
< 0.3*
< 0.2*
< 0.3* | 5.1
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | | Attornalise Florence Authorise Florence Authorise Florence Florenc | mg/kg 0.05
mg/kg 0.05
mg/kg 0.3
mg/kg 0.2 | | 0.19
0.07
< 0.3
< 0.2 | 0.05
< 0.05
< 0.3
< 0.2 | 0.14
0.06
< 0.3
< 0.2 | 7.9
3
0.9
< 0.2 | 3.1
1.1
< 0.3
< 0.2 | 4.2
0.75
< 0.3
< 0.2 | 1.6
0.29
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 9.8°
< 0.05°
< 0.3°
< 0.2° | < 0.05
< 0.05
< 0.3
< 0.2 | 0.16
0.05
< 0.3
< 0.2 | 1.1*
0.56*
< 0.3*
< 0.2* | 1*
0.28*
< 0.3*
< 0.2* | 8.4
2.3
< 0.3
< 0.2 | 0.39
0.13
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | | Anthraquinone Flucrantheme Pyrene | mg/kg 0.2
mg/kg 0.3
mg/kg 0.65
mg/kg 0.65
mg/kg 0.5 | | < 0.2
< 0.3
0.73
0.64 | < 0.2
< 0.3
0.11
0.11
< 0.3 | < 0.2
< 0.3
0.38
0.36 | < 0.2
< 0.3
12
11
< 0.3 | < 0.2
< 0.3
7.3
6.9
< 0.3 | < 0.2
< 0.3
2.2
1.7
< 0.3 | < 0.2
< 0.3
0.9
0.82 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.06
< 0.06 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2*
< 0.3*
< 0.05*
5.2*
< 0.3* | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.23
0.22 | < 0.2*
0.3*
1.2*
1.1*
< 0.3* | <0.2*
<0.3*
1.6*
1.5*
<0.3* | < 0.2
< 0.3
3.9
3.3 | < 0.2
< 0.3
0.62
0.57
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05 | | Butyl benzyl phthalate
Benzo(a)anthracene
Chrysiene
Benzo(b)fluorianthene | mg/kg 0.3
mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | | < 0.3
0.28
0.23
0.21 | < 0.3
0.05
< 0.05
0.05 | < 0.3
0.14
0.15
0.15 | < 0.3
5.1
5 | < 0.3
3.5
3.3
3.8 | < 0.3
0.56
0.56
0.38 | < 0.3
0.26
0.25
0.15 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.06
< 0.05 | < 0.3*
1.6*
4.1*
1* | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.13
0.12
0.15 | < 0.3*
0.51*
0.73*
0.72* | < 0.3*
0.75*
1*
1.3* | < 0.3
0.63
0.6
0.29 | < 0.3
0.28
0.32
0.34 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | | Berac(b)fluoranthene
Berac(k)fluoranthene
Berac(a)pyrene
Indeno(1,2,3-cd)pyrene | mg/kg 0.05
mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | 0.12
0.12
0.14
0.07 | 0.21
0.17
0.28
0.12 | 0.05
< 0.05
0.06
< 0.05 | 0.15
0.08
0.15
0.07 | 5.3
3.2
6
3.1
0.58 | 1.7
3.8 | 0.38
0.21
0.35
0.15 | 0.15
0.1
0.2
0.09 | < 0.05
< 0.05
< 0.05
< 0.05 | 1*
0.29*
0.91*
< 0.05* | < 0.05
< 0.05
< 0.05
< 0.05 | 0.15
0.11
0.15
0.09 | 0.72*
0.35*
0.5*
0.32* | 1.3*
0.32*
0.83*
0.59* | 0.29
0.21
0.22
< 0.05 | 0.34
0.19
0.34
0.18 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | | Dibera(a,h)anthracene
Benac(ghi)perylene | mg/kg 0.05
mg/kg 0.05 | < 0.05
0.1 | < 0.05
0.16 | < 0.05 | < 0.05 | 0.58
3.7 | 0.44
2.4 | < 0.05
0.2 | < 0.05 | < 0.05
< 0.05 | < 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05 | < 0.05* | < 0.05
< 0.05 | < 0.05 | 0.07* | 0.12* | < 0.05
< 0.05 | < 0.05 | < 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | Benotify Dispersions (1)5 – Unsudated searce (1,5 – Insufficient Sample 10 – Not Detected "Data reported searce-offeed does to quality corted parentiels failure and have been occapted and the failure justified as having no supplicate irreset namely data, surrolls was offered as having no supplicate irreset on surrolls data, numrolls was offered and results are estimated from an ethological control in-Neuroll social data and results are estimated from an ethological control in-Neuroll social data from the "Over range data, surrolls was offered and results are estimated from an ethological collection." In-Neurol social data from the | The content of |
--|--|--|------------------|----------------|------------------|------------------|----------------|----------------|----------------|------------------|--------------------|-----------------|----------------------|----------------|----------------|----------------|----------------|----------------------|-------------------|----------------|------------------|----------------|-------------------|----------------|----------------|--------| | The column | mple Reference
pth (m) | | ECTP15
0.20 | ECTP15
0.50 | ECTP15
1.50 | ECTP15
3.00 | ECTP16
0.20 | ECTP16
0.50 | ECTP16
1.50 | ECTP16
3.00 | ECTP17
0.20 | ECTP17
0.50 | ECTP17
1.50 | ECTP17
3.00 | ECTP18
0.20 | ECTP18
0.50 | ECTP18
1.50 | ECTP18
3.00 | ECTP19
0.20 | ECTP19
0.50 | ECTP19
1.50 | ECTP19
4.00 | ECTP20
0.20 | ECTP20
0.50 | ECTP20
1.50 | E | | | | Limit of | Column | Analysis) | ar de de | Content
re Content | % 0.01 | 14 | < 0.1
14 | < 0.1
8.2 | 8 | | < 0.1
11 | < 0.1
7.2 | < 0.1 | 11 | < 0.1
25 | < 0.1
15 | 10 | < 0.1
16 | 41
12 | < 0.1
13 | < 0.1
10 | < 0.1
12 | < 0.1
14 | < 0.1
4.6 | | < 0.1
11 | 13 | | | | September 1985 1985 1985 1985 1985 1985 1985 1985 | ass of sample received | kg 0.001 | 1.3 | | | September 1985 1985 1985 1985 1985 1985 1985 1985 | Chrysotile- Loose | | | | | Column | | | Not-detected | Not-detected | | - | Not-detected | Not-detected | | - | Not-detected | Not-detected | | | Not-detected | Not-detected | | | Not-detected | Not-detected | | | Detected | Not-detected | - | + | | Column | | N/A N/A | 525 | SZS | N/A | N/A | EC | EC | N/A | # | | Column | Automated | pH Units N/A | 8.2 | 8.4 | 7.9 | 7.9 | 7.8 | 7.6 | 8.1 | 7.8 | 8.2 | 7.9 | 7.5 | 8.2 | 7.9 | 8.2 | 7.9 | 7.7 | 7.8 | 8.2 | 8.4 | | 8.2 | 7.5 | 8.2 | | | West | | gl 0.00125
mg/kg 2.5 | : | 0.02
39 | - : | 0.0078 | : | 0.024
48 | : | 0.0077 | - : | 20 | : | 0.011
22 | - : | 38 | : | 0.015
29 | : | 0.024
47 | - : | 0.028
55 | - : | 96 | | | | Series Se | | | | 49.7 | | 7.00 | | 233 | | 7.7 | | 10.1 | | 10.9 | | *** | | 24.7 | | 22.7 | | 47.7 | | 40.1 | | | | Septiminary 19 19 19 19 19 19 19 19 19 19 19 19 19 | nic (aqua regia extractable) | mg/kg 1
mg/kg 0.2 | < 0.2 | | < 0.2 | < 0.2 | 1.20 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | 0.40 | 0.40 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | | Septiment Septim | mium (hosivialent)
mium (III) | mg/kg 1 | 11 | 9.5 | | 29 | 16 | 17 | 25 | 27 | 14 | 23 | 20 | 28 | 21 | 17 | 27 | 25 | 11 | 12 | 22 | 19 | 16 | 17 | 19 | | | September 19 1 | per (aqua regia extractable) | mg/kg 1 | 19 | | 7.5
16 | 3.6
8.6 | | 67
190 | 6.7
10 | | 65 | 27
100 | 30
85 | 12
56 | 140
240 | 130 | 42
230 | 28
170 | 41
23 | 35
22 | 3.3
5.9 | 32
28 | 85
85 | | 77 | | | Column | sry (aqua regia extractable)
if (aqua regia extractable) | mg/kg 0.3 | < 0.3 | < 0.3 | < 0.3 | ≠ 0.3 | 0.6 | 0.5 | < 0.3
31 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3
21 | < 0.3 | < 0.3 | < 0.3 | | | The column | | mg/kg 1
mg/kg 1 | < 1.0
42 | < 1.0
41 | < 1.0
39 | < 1.0
34 | < 1.0
290 | < 1.0
200 | < 1.0
34 | | < 1.0
130 | < 1.0
140 | | < 1.0
58 | < 1.0
240 | < 1.0
240 | < 1.0
160 | < 1.0
130 | < 1.0
63 | < 1.0
82 | < 1.0
27 | < 1.0
57 | < 1.0
140 | < 1.0
160 | < 1.0
140 | | | | | | | | | | | | | | | | , | | | | , | | | | | | | | | | | Septiment | ne
ne | pg/kg 5 | < 5.0
< 5.0 | | Column | | µg/kg 5 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | | | Series | (Methyl Tertiary Butyl Ether) | pg/kg 5 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | | | Series Control of the | Neum Hydrocarbons | mg/kg 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | _ | | Column | | mg/kg 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | | Section Sect | | | ×20 | | < 2.0 | | < 2.0 | < 2.0 | | < 2.0 | | < 2.0 | < 2.0 | | < 2.0 | | < 2.0 | | 100 | 3 | 3.9 | 5.9 | | 4.4 | 21 | | | Section Sect | WG - Alphatic > BC16 - BC21 _{BH CH 20 AL}
WG - Alphatic > BC21 - BC35 _{BH CH 20 AL}
WG - Alphatic > BC24 - BC25 | mg/kg 8
mg/kg 8
mg/kn | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
< 8.0 | 21 | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
18 | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
< 8.0 | < 8.0
25 | < 8.0
38 | < 8.0
14 | < 8.0
< 8.0 | 160
210
gen | 16
34 | 25
36 | 22
55 | 25
100 | 14
48 | 62
230 | | | | | | | | | | | | | | < 0.001 | | - | | < 0.001 | | < 0.001 | - | | < 0.001 | | < 0.001 | | | < 0.001 | L | | | | mg/kg 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001
< 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | | Seminary 1981 1981 1981 1981 1981 1981 1981 198 | | mg/kg 1
mg/kg 2 | | | < 2.0 | | < 2.0 | | | < 2.0 | 2
5.9 | | | | < 2.0 | | < 2.0 | | 21 | 2.1 | | 6.1 | | < 2.0 | | | | | OWG - Aromatic >EC16 - EC21 _{EN CO, 20,00}
OWG - Aromatic >EC21 - EC35 _{EN CO, 20,00} | mg/kg 33
mg/kg 33 | < 10
< 10 | < 10
< 10 | | < 10
< 10 | | < 10
< 10 | < 10
< 10 | < 10
< 10 | 14
20 | < 10
< 10 | < 10
< 10 | < 10
< 10 | < 10
13 | < 10
21 | | < 10
< 10 | 130
290 | | < 10
< 10 | 30
93 | 30
150 | 17 | 52
210 | | | Section Column | CHAN - MOTHER (ELD - ELD) IN CHAN ID AN | reging 22 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | < 10 | 42 | < 10 | - 11 | < 10 | ı/ | £I | < 10 | < 10 | wed | 62 | < 10 | 130 | 180 | 120 | 2/0 | - | | Section Column | omethane
oethane | palka 5
palka 5 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | \top | | Section Column | Chloride | hByd 2 | - : | | < 5.0 | | | | < 5.0 | | | | < 5.0 | | | | < 5.0 | | | | | < 5.0 | | | < 5.0 | | | | orofluoromethane
chloroethene | µg/kg 5 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | : - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | | | | 2-dichloroethene | pg/kg 5 | - | | < 5.0
< 5.0 | | | < 5.0
< 5.0 | <
5.0
< 5.0 | | | | < 5.0
< 5.0 | | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | | < 5.0
< 5.0 | < 5.0
< 5.0 | | | < 5.0
< 5.0 | F | | September 19 1 | chloroethane | | | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | | | STATE OF THE PROPERTY P | promethane | paka 5 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | F | | Marcon | chloroethane | µg/kg 5
µg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | | | Section Sect | -1,2-dichloroethene | µg/kg 5 | - | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | - | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | + | | STATE OF THE PARTY | chloromethane
ichloropropane | pg/kg 5 | - | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0
< 5.0 | - | < 5.0 | < 5.0 | | | Section Column | | | | < 5.0
< 5.0 | < 5.0
< 5.0 | | - : | < 5.0 | | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | | | | Second Column | 3-dichloropropene | paka 5 | | | < 5.0 | < 50 | | < 5.0 | < 5.0 | | | | | < 5.0 | | <50 | | | | | ×50 | | | < 5.0 | < S.O. | | | Second Column | ne . | pg/kg 5 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | | < 5.0 | | - : | < 5.0
< 5.0 | | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | | - : | | < 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0 | | | Column | mochloromethane | µg/kg 5 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | -: | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | | | The state | | µg/kg 5 | | | < 5.0 | | - | | < 5.0 | < 5.0 | - | | | | | | < 5.0
< 5.0 | | | | < 5.0
< 5.0 | | | | < 5.0 | | | March Marc | obenzene
2-Tetrachloroethane | pg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | | | Section Column | n-Xylene | µg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | | | Application | ornomethane
ene | µg/kg 5 | - | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | - | < 5.0 | < 5.0 | < 5.0 | : | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0 | < 5.0
< 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0 | | | Company | | pgkg 5
pgkg 5 | | < 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | + | | The second column | pybenzene | | | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | | | Company | | µg/kg 5
µg/kg 5 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | | | Company Comp | | µg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | | | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | | | Column | utylbenzene
ichlorobenzene | pgkg 5 | | | < 5.0 | < 5.0 | - : | < 5.0
< 5.0 | < 5.0 | < 5.0 | - : | | < 5.0 | < 5.0 | -:- | < 5.0 | < 5.0
< 5.0 | | - : | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0
< 5.0 | | | Column | | µg/kg 5 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | | | Seminate 10 1 1 10 10 10 10 10 | benzene
ibromo-3-chloropropane | µg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0 | | < 5.0
< 5.0 | < 5.0 | | | The state of | Trichloroberaene | hilight 2 | - | < 5.0
< 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0 | < 5.0 | < 5.0 | - : | < 5.0 | < 5.0 | < 5.0
< 5.0 | - : | < 5.0 | < 5.0 | | | The color | Trichlorobenzene | pg/kg 5 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | | < 5.0 | < 5.0 | < 5.0 | - | < 5.0 | < 5.0 | | | Section Sect | *
! | mg/kg 0.1
mg/ko n.o | < 0.1 | < 0.1 | | | | | | | | | | | | | | | | < 0.1 | | | | | 0.3 | | | Company Comp | | mg/kg 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | | State | chlorobenzene
chlorobenzene | mg/kg 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | | The column | :Norobenzene
Noroisopropyl)ether | mg/kg 0.2
mg/kg 0.1 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.1 | < 0.2 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2 | | | Property | foroethane | mg/kg 0.3
mg/kg 0.05 | < 0.3 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | F | | ment when we will be a company of the th | /iphenol | mg/kg 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | t | | Templageman with 13 13 13 13 13 13 13 1 | phenol
methylphenol | mg/kg 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3 | < 0.3
< 0.3 | H | | Table 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Noroethoxy)methane
Frichloroberaene | mg/kg 0.3
mg/kg 0.3 | < 0.3 | < 0.3
< 0.3 | < 0.3 | < 0.3
< 0.3 | < 0.3
< 0.3 | < 0.3
< 0.3 | < 0.3 | < 0.3 | < 0.3
< 0.3 | < 0.3 | < 0.3
< 0.3 | < 0.3 | < 0.3 | < 0.3
< 0.3 | < 0.3
< 0.3 | < 0.3
< 0.3 | < 0.3 | < 0.3 | | | Indications | olone | mg/kg 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.2
< 0.3 | 0.13
< 0.3 | < 0.05 | < 0.05 | 1.5
< 0.3 | < 0.05
< 0.3 | 0.08 | 0.06 | 0.16 | 0.16 | < 0.3 | 0.07
< 0.3 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.13 | | 0.12
< 0.3 | | | The companies and the control of | viorobutaciene | mg/kg 0.1
mg/kg 0.1 | < 0.1 | | | | < 0.1 | < 0.1 | | | < 0.1 | < 0.1 | | | | < 0.1 | < 0.1 | < 0.1 | | < 0.1 | | < 0.1 | | | < 0.1 | | | Page 1.5 -6.5 - | richlorophenol | mg/kg 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | F | | Application | ry/naphthaliene
ronaphthaliene | mg/kg 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1 | 0.3
< 0.1 | 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1 | 2.8
< 0.1 | < 0.1
< 0.1 | 0.1
< 0.1 | < 0.1
< 0.1 | 0.2
< 0.1 | 0.2
< 0.1 | 0.1
< 0.1 | < 0.1
< 0.1
 < 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | 0.1
< 0.1 | | | Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | rylphthelate
ritrotoluene | mg/kg 0.1
mg/kg 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | + | | Section 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | ohthene | mg/kg 0.05
mg/kg 0.05 | < 0.05
< 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.71 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.07 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.28 | 0.12 | 0.23 | | | Principle (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) | ofuran | mg/kg 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | 0.7 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | 0.2 | < 0.2 | < 0.2 | | | Part 100 | phthalate | mg/kg 0.2
mg/kg 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | | | mergandride (%) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2 | e
zene | mg/kg 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.06
< 0.3 | < 0.05 | < 0.05 | < 0.05 | 0.68
< 0.3 | < 0.05 | < 0.05 | < 0.05 | < 0.3 | < 0.3 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.39 | 0.14 | < 0.3 | + | | The control of co | thenyl phenyl ether
lorobenzene | mg/kg 0.2
mg/kg 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2 | < 0.2
< 0.3 | < 0.2 | < 0.2 | < 0.2 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2 | < 0.2
< 0.3 | < 0.2 | < 0.2
< 0.3 | | | Proceedings | chrene
cene | mg/kg 0.05 | 0.12 | 0.09 | < 0.05 | < 0.05 | 0.86 | 0.30 | 0.19 | < 0.05 | | 0.2 | 0.48 | 0.11 | 0.91 | 0.66 | 0.34 | 0.31 | < 0.05 | | < 0.05 | 0.19 | 4.7 | | 4.7 | | | Part 15 4-53 4- | | mg/kg 0.2 | | | | | | | | | < 0.2 | | | | < 0.2 | < 0.2 | | < 0.2 | | | | | < 0.2 | | < 0.2 | | | Part 15 4-53 4- | quinone
ithene | ma/kp 0.05 | < 0.3
0.31 | < 0.3
0.22 | < 0.3 | < 0.3 | < 0.3
1.3 | < 0.3 | < 0.3
0.43 | < 0.3 | 4.4 | < 0.3
0.48 | < 0.3
0.74 | < 0.3
0.15 | 1.3 | < 0.3 | < 0.3
0.5 | 1.2 | < 0.3
0.43 | < 0.3 | < 0.3 | < 0.3
0.42 | 11 | < 0.3 | 18 | F | | Conference Con | | mg/kg 0.3 | | < 0.3 | | | | | | | 4.1 | | 0.7
< 0.3
6.36 | | 1.3
< 0.3 | 1.2
< 0.3 | | 1.1
< 0.3
0.55 | < 0.3 | 0.54
< 0.3 | < 0.05 | | < 0.3 | 6.5
< 0.3 | < 0.3 | | | | enzyl phthalate | mg/kg 0.05
mg/kg 0.05 | 0.21 | 0.18 | < 0.05 | < 0.05 | 0.59 | 0.39 | 0.2 | < 0.05 | 2 | 0.3 | 0.36 | 0.06 | 0.78 | 0.85 | 0.28 | 0.6 | 0.31 | 0.27 | < 0.05 | 0.27 | 4.4 | 2.7 | 6.9 | F | | Columbia | oenzyl phthalate
(a)anthracene
ine | mg/kg 0.05 | 0.14 | 0.11
0.17 | < 0.05
< 0.05 | < 0.05
< 0.05 | 0.28 | 0.23 | 0.11
0.24 | < 0.05
< 0.05 | 1
1.6 | 0.16 | 0.2 | 0.06 | 0.35 | 0.4 | 0.27
0.27 | 0.29 | 0.19
0.41 | 0.49 | < 0.05
< 0.05 | 0.16 | 2.7
6.1 | 1.4 | 4.8
8.7 | | | Unsubdate Sample 1,5 - Transform Sample 100 - Not Detected | eerzyl phthalate
(a)anthracene
ine
(b)fluorianthene
(k)fluorianthene | mg/kg 0.05 | 1 11 | 0.07 | < 0.05 | < 0.05 | 0.23 | 0.22 | 0.1 | < 0.05 | 0.71 | 0.15 | 0.19 | < 0.05 | 0.31 | 0.37 | 0.14 | 0.26 | 0.23 | 0.12 | < 0.05 | 0.15 | 3.1 | 2.1 | 4.2 | | | | bainyl phthalate ((a)aethivacine eine (b)funcaithane ((b)funcaithane ((b)funcaithane ((b)funcaithane ((a)pyrene | mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | < 0.05 | < 0.05 | < 0.05 | < 0.05 | 0.05 | | | | | | | | | | | | | | | | | 0.44 | | | | | Seincyl phthalisto (a)asethroscine eine (b)fluorache eine (b)fluorachene (c)fluorachene | mg/kg 0.05
mg/kg 0.05 | < 0.05
0.12 | < 0.05 | < 0.05 | < 0.05 | 0.29 | 0.31 | 0.09 | < 0.05 | 0.86 | 0.21 | 0.26 | < 0.05 | 0.44 | 0.54 | 0.21 | 0.37 | 0.31 | 0.17 | < 0.05 | 0.21 | | 2.5 | | | | 2022 Site Investigation Summary Table 1 |
--|---|--------------------------|---|-------------------------------------|-----------------------------------|-----------------------------------|---|--------------------------------------|-----------------------------------|--|--------------------------------------|--|---|-----------------------------------|--|-------------------------------------|------------------------------------|---|-----------------------------------|--|--------------------------------------|-------------------------------------|---------------------------------------|---------------------------------------|--| | Sample Reference
Depth (m) | L L | ECTP21
0.20 | ECTP21
0.50 | ECTP21
1.50 | BCTP21
3.00 | ECTP22
0.20 | 0.50 | ECTP22
1.50 | ECTP22
3.00 | ECT923
0.20 | 6CTP23
0.50 | ECTP23
1.50 | ECTP23
3.00 | ECTP24
0.20 | 0.50 | ECTP24
1.50 | 3.00 | 0.20 | 6CTP25
0.50 | ECTP25
1.50 | ECTP25
3.00 | 0.20 | 0.50 | ECTP26
1.50 | 8CTP26
3.00 | | Analytical Parameter
(Soil Analysis) | Units | Stone Content
Moisture Content
Total mass of sample received | % 0.1
% 0.01
kg 0.001 | < 0.1
13
1.3 | < 0.1
13
1.3 | < 0.1
7.3 | < 0.1
9.7
1.3 | < 0.1
17
1.3 | < 0.1
3.1 | < 0.1
3.9
1.3 | < 0.1
19 | < 0.1
12
1.3 | < 0.1
14
1.3 | < 0.1
20
1.3 | < 0.1
17
1.3 | < 0.1
11
13 | < 0.1
11
1.3 | < 0.1
12 | < 0.1
11
1.3 | 27
9.5
1.3 | < 0.1
11
1.3 | 56
8.2
1.3 | < 0.1
13
1.3 | < 0.1
9.7
1.3 | < 0.1
11
1.3 | 50
8 | < 0.1
13
1.3 | | | | | Chrysotile-Loose | | | | | | | Chrysotile-Loose | Crocidolite- Loose
Fibres | | - | | | | | | | | | | | | | | Asbestos in Soil Screen / Identification Name
Asbestos in Soil
Asbestos Analyst ID | Type N/A
Type N/A
N/A N/A | Not-detected
WEM | Fibres Detected WEM | N/A | N/A | Not-detected
WFM | Not-detected
WEM | | N/A | Fibres Detected WEM | Pibres Detected WBM | -
N/A | N/A | Not-detected
WEM | Not-detected
WEM | N/A | N/A | Not-detected
WEM | | | N/A | Not-detected
KSZ | Not-detected
KSZ | N/A | N/A | | General Inorganics | Intition NA | 70 | 7.0 | 7.8 | 74 | 6.7 | 7 | 7 | 7.8 | 8.2 | | 7.7 | 76 | 8.4 | | 8.9 | | 10.5 | | 9.3 | | 7.6 | | 8.5 | | | pH - Automated Water Soluble S04 (2:1 Leach, Equiv.) The entraction Water Soluble S04 (2:1 Leach, Equiv.) The entraction Water Soluble S04 (2:1 Leach, Equiv.) The entraction | gf 0.00125
mg/kg 2.5
mg/l 1.25 | | 0.29
590
295 | | 0.054
110
54.4 | | 0.0085
17
8.5 | : | 0.057
110
57.2 | | 8.1
0.018
36
17.8 | | 0.088
180
87.7 | : | 0.016
31
15.6 | | 8.8
0.032
65
32.3 | | 9.6
0.066
130
65.8 | | 8.8
0.048
96
48.1 | | 0.08
160
80.4 | | 0.077
150
76.9 | | Heavy Metalis / Metalloids
Arsenic (aqua regia extractable)
Cadmium (aqua regia extractable) | mg/kg 1
mg/kg 0.2
mg/kg 1.6 | 11 < 0.2 | 15
< 0.2 | 6.4 | 13
< 0.2 | 52
< 0.2 | 5.5
< 0.2 | 5.7
< 0.2 | 4.9 | 9.5
< 0.2 | 7.1
< 0.2 | 8.4
< 0.2 | 7.4
< 0.2 | 10
0.60 | 6 < 0.2 | 3.8 | 3.3 | 4.9
0.20 | 5.7
< 0.2 | 7.3
0.50 | 7.8
< 0.2 | 12
< 0.2 | 27
< 0.2 | 46 | 11
< 0.2 | | caemum (aqua regia somaciante) Chromium (III) Chromium (aqua regia extractable) | mg/kg 1.5
mg/kg 1
mg/kg 1 | < 1.8
13
13 | < 1.8
12
12 | < 1.8
32
32 | < 1.8
39
40 | < 1.8
22
22 | < 1.8
18
18 | < 1.8
18
18 | < 1.8
29
30 | < 1.8
22
22 | < 1.8
31
32 | < 1.8
32
32 | < 1.8
32
32 | < 1.8
12
12 | <1.8
11
11 | < 1.8
11
12 | < 1.8
10
10 | < 1.8
14
15 | < 1.8
12
13 | < 1.8
15
15 | < 1.8
10
10 | < 1.8
18
18 | < 1.8
24
24 | < 0.2
< 1.8
46
47 | < 1.8
11
11 | | Copper (aqua regia extractable)
Lead (aqua regia extractable)
Mercury (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 0.3 | 47 | 76
74
0.4 | 5.8
11
< 0.3 | 5.5
8
< 0.3 | 56
160
1.2 | 2.7
23
< 0.3 | 3.9
12
< 0.3 | 3.4
6.1
< 0.3 | 33
140
1.3 | 3.4
7.9
< 0.3 | 4.8
10
< 0.3 | 3.7
11
< 0.3 | 67
1000
< 0.3 | 9.5
10
< 0.3 | 5.3
6.7
< 0.3 | 5
9.1
< 0.3
8.9 | 22
150
< 0.3 | 29
470
< 0.3 | 39
450
< 0.3 | 21
14
< 0.3 | 48
120
< 0.3 | 91
130
< 0.3 | 130
170
< 0.3 | 43
35
< 0.3 | | Mickel (aqua regia extractable)
Selemium (aqua regia extractable)
Zinc (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 1 | 14
< 1.0
100 | 16
< 1.0
180 | 39
< 1.0
48 | 47
<1.0
44 | 34
< 1.0
210 | 21
< 1.0
28 | 20
< 1.0
37 | 35
< 1.0
29 | 32
< 1.0
200 | 38
< 1.0
33 | 37
< 1.0
34 | 37
< 1.0
37 | 21
< 1.0
190 | 9.9
< 1.0
24 | 11
< 1.0
26 | 8.9
< 1.0
23 | 23
< 1.0
85 | 26
< 1.0
120 | 39
< 1.0
760 | 11
< 1.0
32 | 39
< 1.0
140 | 42
< 1.0
160 | 52
< 1.0
230 | 15
< 1.0
88 | | Monoaromatics & Oxygenates
Berusne
Tolume | μg/kg 5
μg/kg 5 | < 5.0
< 5.0 | Ethylbenzene
g & m-xylene
g-xylene | µg/kg 5
µg/kg 5
µg/kg 5 | < 5.0
< 5.0
< 5.0 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | MTBE (Nethyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Alphatic >ECS - ECS _{101 100 86} | para s | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 5.0 | < 0.001 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | < 5.0 | | TPH-CWG - Alphatic >EC6 - EC8 _{M, 10, IL}
TPH-CWG - Alphatic >EC8 - EC10 _{M, 10, IL}
TPH-CWG - Alphatic >EC10 - EC12 _{M, 11, IL} | mg/kg 0.001
mg/kg 0.001
mg/kg 0.001
mg/kg 1 | | < 0.001
< 0.001
1.9 | < 0.001
< 0.001
2.8 | < 0.001
< 0.001
2.7 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | 3.7
7.2
350 | < 0.001
< 0.001
< 1.0 0.001
0.078
< 1.0 | | TPH-CMG - Alphatic > 8C12 - 8C16 _{M Cl 20 A}
TPH-CMG - Alphatic > 8C16 - 8C21 _{M Cl 20 A}
TPH-CMG - Alphatic > 8C21 - 8C35 _{M Cl 20 A}
TPH-CMG - Alphatic (8C5 - 8C35) _{M Cl 20 A} | mg/kg 2
mg/kg 5
mg/kg 8
mg/kg 8 | 73
110
170
360 | 61
100
160
330 | 7.6
< 8.0
< 8.0 | 19
< 8.0
< 8.0
24 | < 2.0
< 8.0
23 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | 1700
1600
14
3700 | < 2.0
< 8.0
37 | < 2.0
< 8.0
< 8.0 | < 2.0
25
< 8.0 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
34
40 | < 2.0
8.5
58 | 2.3
10
82
95 | < 2.0
< 8.0
< 8.0
< 10 | 3
< 8.0
38
40 | < 2.0
< 8.0
86
91 | < 2.0
< 8.0
20
20 | < 2.0
< 8.0
< 8.0 | | THH-CWG - Alphatic (ECS - EC35) _{BK CB+HS, ID, M} . THH-CWG - Aromatic >ECS - EC7 _{KB ID, M} . THH-CWG - Aromatic >EC7 - EC8 _{MB ID, M} . | mg/kg 0.001
mg/kg 0.001 | < 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | | < 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 10
< 0.001
< 0.001 | | < 0.001
< 0.001 | 95
< 0.001
< 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | 91
< 0.001
< 0.001 | < 0.001
< 0.001 | < 0.001
< 0.001 | | TPH-CWG - Aromatic >EC8 - EC10 _{HC,10,30}
TPH-CWG -
Aromatic >EC10 - EC12 _{BC,01,30,40}
TPH-CWG - Aromatic >EC12 - EC16 _{BC,01,30,40} | mg/kg 0.001
mg/kg 0.001
mg/kg 1
mg/kg 2 | | < 0.001
< 0.001
< 1.0
14
81 | < 0.001
< 1.0
< 2.0 | < 0.001
85
690 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
2.9 | < 0.001
< 1.0
< 2.0 0.001
< 1.0
< 2.0
< 10 | | TPH-CWG - Aromatic > BC16 - BC21 _{EV, CU, ED, AN}
TPH-CWG - Aromatic > BC21 - BC35 _{EM, CU, ED, AN}
TPH-CWG - Aromatic (EC5 - EC35) _{EM, CU+MS, ED, AN} | mg/kg 2
mg/kg 30
mg/kg 30
mg/kg 30 | 110
220
350 | 81
190
280 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
47
53 | < 10
< 10
< 10 | < 10
< 10
< 10 | 900
510
2200 | < 10
64
66 | < 10
< 10
< 10 | 70
< 10
82 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
22
23 | < 10
50
55 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | 12
130
140 | < 10
< 10
13 | < 10
< 10
< 10 | | VOCs
Chloromethane
Chloroethane | µg/kg 5
µg/kg 5 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Sromomethane Viryl Chloride Trichlorofluoromethane 1,1-Dichlorosthane | | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,1,2-Trichloro 1,2,2-Triflucroethane
čis-1,2-dichloroethane
MTBE (Nethyl Tertiary Butyl Ether) | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | 1,1-Dichloroethane
2,2-Dichloropropane
Trichloromethane | µg/kg 5
µg/kg 5
µg/kg 5 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - 1 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,1,1-Trichiscostellane 1,2-Dichlorosthane 1,1-Dichlorostropene Trans-1,2-dichlorosthane | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Berosine
Tetrachionomethane
1,2-Dichloropropane | µg/kg 5
µg/kg 5
µg/kg 5
µg/kg 5 | - : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Trichloroidhane
Dibromomethane
Bromodichloromethane | | | < 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | Cis-1,3-dichloropropene
Trans-1,3-dichloropropene
Tolaine
1,1,2-Trichloroethane | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,3-Dichloropropane
Dibromochloromethane
Tetrachloroethane | haya 2
haya 2 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,2-Oitromoethane Chlorobaruse 1,1,2-Tetrachloroethane Ethybanzene | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | p & m-Xylene
Styrene
Tribromomethane | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | o-Xylene
1,1,2,2-Tetrachloroethane
Isopropylberusine
Bromobanane | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | n-Propy/birizane
2-Chlorotoluene
4-Chlorotoluene | paka 5
paka 5
paka 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,3,5-Trimethy/benzene
tent-8uty/Genzene
1,2,4-Trimethy/benzene
seo-Buty/benzene | μα/kg 5
μα/kg 5
μα/kg 5
μα/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
<
5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,3-Dichlorobenzene
p-Isopropyttoluene
1,2-Dichlorobenzene | paka 5
paka 5
paka 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,4-Oichlorobenzene
Buty/benzene
1,2-Oichromo-3-chloropropane | | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Missachiorobutadiene
1,2,3-Trichiorobutadiene | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | SVOCs
Anline
Phenol | mg/kg 0.2 | | < 0.1 | < 0.1 | < 0.2 | < 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.2 | < 0.2* | < 0.2 | < 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.2 | < 0.1 | < 0.1 | < 0.2 | < 0.2 | < 0.1 | < 0.2 | < 0.1
< 0.2 | 1 < 0.2 | < 0.2 | 0.4
< 0.2 | | 2-Chicropherol
Bis(2-chicrosthyl)sther
1,3-Dichlorobenzine
1,2-Dichlorobenzine | mg/kg 0.1
mg/kg 0.2
mg/kg 0.2
mg/kg 0.1 | < 0.2 | < 0.1
< 0.2
< 0.2
< 0.1 0.1°
< 0.2°
< 0.2°
< 0.1° | < 0.1
< 0.2
< 0.2
< 0.1 | 1,2 Octoberbanne LA Octoberbanne BioC Octoberbanne BioC Octoberbanne BioC Octoberbanne BioC Octoberbanne BioC Octoberbanne BioCotoberbanne BioCotoberbanne BioCotoberbanne LA Biophythand Biochtophythane BioCotoberbanne BioCotob | mg/kg 0.2
mg/kg 0.1
mg/kg 0.3 | < 0.2
< 0.1
< 0.3
< 0.05 | < 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.3 | < 0.2*
< 0.1*
< 0.3* | < 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.3
< 0.06 | < 0.2
< 0.1
< 0.3 | rkosachlorosthane
fistrobenzane
4-Mathylphenol | mg/kg 0.05
mg/kg 0.3
mg/kg 0.2
mg/kg 0.2 | < 0.05 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.3 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05°
< 0.3°
< 0.2°
< 0.2° | < 0.05
< 0.3
< 0.2
< 0.2 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
× 0.3
× 0.2
× 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.2 | | Sophorone 2-Nitrophenol 2,4-Dimethylphenol 86/2-z-Morenthylphenol | mg/kg 0.3
mg/kg 0.3
mg/kg 0.3 | < 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | <0.2
<0.3
<0.3
<0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2°
< 0.3°
< 0.3°
< 0.3° | <0.2
<0.3
<0.3
<0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | <0.2
<0.3
<0.3
<0.3 | < 0.3
< 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | <0.2
<0.3
<0.3
<0.3 | < 0.3
< 0.3
< 0.3 | < 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3
< 0.3 | | 1,2,4-Trichioroberaune
Naghthalene
2,4-Sichlonophenol
4-Chiorobenilina | mg/kg 0.3
mg/kg 0.05
mg/kg 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
0.12
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3*
< 0.05*
< 0.3* | < 0.3
< 0.05
< 0.3 0.3
0.07
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
0.24
< 0.3 | < 0.3
0.13
< 0.3 | < 0.3
0.21
< 0.3 | < 0.3
0.08
< 0.3 | | Mexachiorobutacliene
4-Chioro-3-methylphenol | mg/kg 0.1
mg/kg 0.1
mg/kg 0.1
mg/kg 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1°
< 0.1°
< 0.1°
< 0.1° | < 0.1
< 0.1
< 0.1
< 0.1 | 2,4,5-Trichterophenol
2,4,5-Trichterophenol
2-Midtylraphthalene
2-Chiconaphthalene | mg/kg 0.2
mg/kg 0.1
mg/kg 0.1 | < 0.2
0.1 | < 0.2
0.1
< 0.1 | < 0.2 | < 0.2 | < 0.2
0.1 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2*
< 0.1* | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2
0.1 | < 0.2
< 0.1 | < 0.2
< 0.1 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2 | < 0.2
0.3
< 0.1 | < 0.2
0.2 | < 0.2
0.3 | < 0.2
< 0.1
< 0.1 | | Dimethylphthalate
2,6-Dinitrotoluene | mg/kg 0.1
mg/kg 0.1
mg/kg 0.05 | < 0.1
< 0.1 0.1°
< 0.1° | < 0.1
< 0.1 | < 0.1
< 0.1
< 0.05 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1
< 0.05 | < 0.1 | < 0.1
< 0.1
0.05 | < 0.1
< 0.1
0.05 | < 0.1 | < 0.1
< 0.1 | | Aconaphthylene Aconaphthene 2,4-Diritrotoloene Diberzofuran | mg/kg 0.05
mg/kg 0.2
mg/kg 0.2 | | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | 8.2
< 0.2
3.2 | < 0.05*
< 0.2*
< 0.2* | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | 0.06
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | 0.06
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | | 4-Chlorophenyl phenyl ether
Diethyl phthalate | mg/kg 0.3
mg/kg 0.2
mg/kg 0.2
mg/kg 0.25 | < 0.2 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
6.4 | < 0.3*
< 0.2*
< 0.2*
< 0.05* | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
< 0.06 | < 0.3
< 0.2
< 0.2
< 0.05 0.2
0.06 | < 0.3
< 0.2
< 0.2
< 0.05 | < 0.3
< 0.2
< 0.2
0.05 | < 0.3
< 0.2
< 0.2
< 0.05 | | Azoberurene
Bromophenyl phenyl ether
Hossichlorobenzene | mg/kg 0.3
mg/kg 0.2
mg/kg 0.3 | < 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 6.4
< 0.3
< 0.2
< 0.3 | < 0.05*
< 0.3*
< 0.2*
< 0.3* | < 0.05
< 0.3
< 0.2
< 0.3 0.06
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | | Pour our annue Macheniane Assensiane Assensia | mg/kg 0.05
mg/kg 0.05
mg/kg 0.3
mg/kg 0.2 | | 0.5
0.32
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 0.19
< 0.05
< 0.3
< 0.2 | 0.45
0.17
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 10
2.5
< 0.3
< 0.2 | 0.13*
< 0.05*
< 0.3*
< 0.2* | < 0.05
< 0.05
< 0.3
< 0.2 | 0.15
0.05
< 0.3
< 0.2 | 0.15
0.05
< 0.3
< 0.2 | 0.27
0.06
< 0.3
< 0.2 | 0.06
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 0.18 | 0.1
< 0.05
< 0.3
< 0.2 | 0.17
0.06
< 0.3
< 0.2 | 0.15
< 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3
< 0.2 | 0.98
0.28
< 0.3
< 0.2 | 0.61
0.2
< 0.3
< 0.2 | 0.76
0.25
< 0.3
< 0.2 | 0.15
0.08
< 0.3
< 0.2 | | Decoy persuase Anthraquinone Fluorasthirms Pyrene Budy beinyl phthalate | mg/kg 0.2
mg/kg 0.3
mg/kg 0.65
mg/kg 0.65
mg/kg 0.5 | | < 0.2
< 0.3
1.4
1.4
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.25
0.23 | < 0.2
< 0.3
0.57
0.59 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
4.9
4.8 | < 0.2*
< 0.3*
0.25*
0.25*
< 0.3* | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.18
0.2
< 0.3 | < 0.2
< 0.3
0.28
0.26
< 0.3 | < 0.2
< 0.3
0.6
0.59 | < 0.2
< 0.3
0.24
0.28 | < 0.2
< 0.3
0.09
0.09 | < 0.2
< 0.3
0.67
0.67 | < 0.2
< 0.3
0.19
0.22
< 0.3 | < 0.2
< 0.3
0.38
0.43 | < 0.2
< 0.3
0.28
0.3
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
2.1
2
< 0.3 | < 0.2
< 0.3
1.2
1.2
< 0.3 | < 0.2
< 0.3
1.4
1.3
< 0.3 | < 0.2
< 0.3
0.38
0.43 | | Butyl benzyl phthalate
Benzo(a)anthracone
Chrysene
Benzo(b)fluoranthrane | mg/kg 0.3
mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | | < 0.3
0.72
0.77
0.81 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.1
0.08
0.09 | < 0.3
0.25
0.28
0.29 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.74
0.84
0.46 | < 0.3*
0.13*
0.18*
0.24* | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.11
0.07
0.07 | < 0.3
0.1
0.13
0.09 | < 0.3
0.28
0.34
0.32 | < 0.3
0.13
0.12
0.12 | < 0.3
< 0.05
< 0.05
< 0.05 | < 0.3
0.31
0.33
0.25 | < 0.3
0.13
0.1
0.1 | < 0.3
0.19
0.23
0.22 | < 0.3
0.17
0.16
0.17 | < 0.3
< 0.05
<
0.05
< 0.05 | < 0.3
1
1.1
0.99 | < 0.3
0.6
0.72
0.74 | < 0.3
0.65
0.76
0.61 | < 0.3
0.21
0.19
0.18 | | Berrac(h)fluoranthiene
Berrac(k)fluoranthiene
Berrac(a)pyrene
Indeno(1,2,3-cd)pyrene | mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | 0.49
0.61
0.35 | 0.81
0.44
0.84
0.44
0.09 | < 0.05
< 0.05
< 0.06 | 0.09
< 0.05
0.08
< 0.05 | 0.29
0.16
0.28
0.12 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | 0.46
0.22
0.34
0.09 | 0.07*
0.18*
0.11* | < 0.05
< 0.05
< 0.05
< 0.05 | 0.07
< 0.05
0.06
< 0.05 | 0.09
0.06
0.11
0.05 | 0.32
0.25
0.32
0.14 | 0.12
< 0.05
0.12
0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | 0.16
0.26
0.11 | 0.13
0.05
0.12
< 0.05 | 0.22
0.1
0.24
0.09 | 0.1
0.17
0.08 | < 0.05
< 0.05
< 0.05
< 0.05 | 0.99
0.72
1.1
0.47 | 0.74
0.34
0.69
0.31
0.08 | 0.61
0.51
0.64
0.33
0.08 | 0.18
0.12
0.22
0.09 | | Dibero(a,h)esthracene
Benzo(ghi)perylene | mg/kg 0.05
mg/kg 0.05 | 0.08
0.46 | 0.09 | < 0.05 | < 0.05 | < 0.05
0.19 | < 0.05 | < 0.05
< 0.05 | < 0.05 | < 0.05* | < 0.05 | < 0.05
< 0.05 | < 0.05
0.07 | < 0.05
0.2 | < 0.05 | < 0.05
< 0.05 | < 0.05
0.16 | < 0.05 | < 0.05
0.15 | < 0.05
0.14 | < 0.05
< 0.05 | 0.12 | 0.08 | 0.08 | < 0.05 | Benotify Dispersions (1)5 – Unsudated searce (1,5 – Insufficient Sample 10 – Not Detected "Data reported searce-offeed does to quality corted parentiels failure and have been occapted and the failure justified as having no supplicate irreset namely data, surrolls was offered as having no supplicate irreset on surrolls data, numrolls was offered and results are estimated from an ethological control in-Neuroll social data and results are estimated from an ethological control in-Neuroll social data from the "Over range data, surrolls was offered and results are estimated from an ethological collection." In-Neurol social data from the | 2022 Site Investigation Summary Table 1 |--|--|--------------------------------------|--|--|--|--|---|---|---|--|--|--|--|--|--|--|--|---|--|--|--|-------------------------------------|--|--|--| | Sample Reference
Depth (m) | Linit | 9.20
0.20 | ECTP27
0.50 | ECTP27
1.50 | 8CTP27
3.00 | 0.20 | 0.50 | ECTP28
1.50 | ECTP28
2.00 | 6CTP29
0.20 | 0.50 | ECTP29
1.50 | 2.50 | 0.20 | 0.50 | ECTP30
1.50 | ECTP30
2.00 | ECTP31
0.20 | 0.50 | ECTP31
1.50 | ECTP31
2.00 | 0.20 | 0.50 | ECTP32
1.50 | ECTP32
3.00 | | Analytical Parameter
(Soil Analysis) | Units | Stone Content
Moisture Content
Total mass of sample received | % 0.1
% 0.01
kg 0.001 | 51
7.4
1.3 | 67
8.8
1.3 | < 0.1
12
1.3 | 8.3
16
1.3 | < 0.1
14
1.3 | < 0.1
11
1.3 | < 0.1
14
1.3 | < 0.1
17
1.3 | < 0.1
13
1.3 | 24
12
1.3 | < 0.1
12
1.3 | < 0.1
12
1.3 | < 0.1
8.9
1.3 | < 0.1
7.9
1.3 | < 0.1
7.3
1.3 | < 0.1
8.5
1.3 | < 0.1
8.9
1.3 | < 0.1
10
1.3 | < 0.1
13
1.3 | < 0.1
10
2 | < 0.1
13
1 | < 0.1
8.4
1.3 | < 0.1
7.9
1.3 | < 0.1
8.7
1.3 | | | | | | | | | | | | | Chrysotile-Loose
Fibrous Debris | | | Amosite-Loose
Fibres | | | | | | | | | | | | | Asbestos in Soil Screen / Identification Name
Asbestos in Soil
Asbestos Analyst ID | Type N/A Type N/A N/A N/A | Not-detected
KSZ | Not-detected
KSZ | N/A | N/A | Not-detected
KSZ | Not-detected
KSZ | N/A | N/A | Not-detected
KS2 | | N/A | -
N/A | Detected
KSZ | Not-detected
KSZ | N/A | N/A | Not-detected
PDO | Not-detected
PDO | N/A | N/A | Not-detected
PDO | Not-detected
PDO | N/A | N/A | | General Inorganics
pH - Automated
Water Soluble SO4 (2:1 Leach: Equiv.) 1hr extraction | pH Units N/A | 9 | 9.8 | 8.9 | 8.5 | 7.8 | • | 8.8 | 8.8 | 8.8 | 8.7 | 8.6 | 7.8 | 7.5 | 72 | 7.3 | 6.8 | 8 | 7.2 | 6.8 | 6.9 | 7 | 6.9 | 7 | 7.2 | | Water Soluble SO4 (2:1 Leach. Equiv.) 1hr estraction
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr estraction
Water Soluble SO4 (2:1 Leach. Equiv.) 1hr estraction | gf 0.00125
mg/kg 2.5
mg/l 1.25 | : | 0.33
670
334 | | 0.16
330
163 | | 8.8
0.027
54
26.9 | - | 8.8
0.056
110
55.8 | | 0.016
31
15.7 | ÷ | 0.065
130
65.4 | : | 0.0019
3.8
1.9 | | 0.0026
5.1
2.6 | - | 0.0013
2.6
1.3 | - : | 6.9
0.0042
8.4
4.2 | - | 0.014
28
14.2 | : | 0.0066
13
6.6 | | Heavy Metalis / Metalloids
Arsenic (aqua regia extractable)
Cadmium (aqua regia extractable) | mg/kg 1
mg/kg 0.2
mg/kg 1.5 | 25
< 0.2 | 52
< 0.2
< 1.8 | 4.1 | 7.9
0.50
< 1.8 | 39
1.80 | 19
< 0.2 | 7.1
< 0.2 | 7.1
< 0.2 | 15
1.30 | 13
0.50 | 5.3
< 0.2 | 7.3
< 0.2 | 8
< 0.2 | 6.6 | 4.8
< 0.2
< 1.8 | 6.2 | 12 < 0.2 | 4.9
< 0.2 | 6 < 0.2 | 7
<0.2 | 6
< 0.2 | 5.7
< 0.2 | 5.6
< 0.2 | 6.5 | | Chromium (hicolvalieti)
Chromium (III)
Chromium (aqua regia exhactable) | mg/kg 1.8
mg/kg 1
mg/kg 1 | < 1.8
26
26 | < 1.8
11
11 | < 1.8
11
11 | < 1.8
16
16 | < 1.8
22
22 | < 1.8
11
11 | < 1.8
16
16 | < 1.8
17
17 | < 1.8
22
24 | < 1.8
21
22 | < 1.8
9.6
9.8 | < 1.8
9.1
9.1 | < 1.8
24
25 | < 1.8
24
24 | < 1.8
26
26 | < 1.8
30
30 | < 1.8
21
21 | < 1.8
28
29 | < 1.8
27
27 | < 1.8
30
30 | < 1.8
21
21 | < 1.8
24
24 | < 1.8
24
24 | < 1.8
26
26 | | Copper (aqua regia extractable)
Lead (aqua regia extractable)
Mercury (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 0.3 | 160
160
< 0.3 | 300
220
< 0.3 | 13
11
< 0.3 | 63
19
< 0.3 | 230
290
< 0.3 | 140
39
< 0.3 | 21
14
< 0.3 | 15
15
< 0.3 | 69
130
< 0.3 | 53
88
< 0.3 | 22
21
< 0.3 | 21
19
< 0.3 | 22
230
< 0.3 | 14
59
< 0.3 | 4.3
5.2
< 0.3 | 9.5
11
< 0.3 | 91
210
0.3 | 3.3
9.6
< 0.3 | 5.7
11
< 0.3 | 6.3
26
< 0.3 | 17
20
< 0.3 | 4.3
26
< 0.3 | 3.4
13
< 0.3 | 17
< 0.3 | | Mickel (aqua regia extractable)
Selemium (aqua regia extractable)
Zinc (aqua regia extractable) | mg/kg 1
mg/kg 1
mg/kg 1 | 50
< 1.0
260 | 29
< 1.0
320 | 10
< 1.0
47 | 15
< 1.0
140 | 57
< 1.0
460 | 15
< 1.0
190 | 16
< 1.0
58 | 18
< 1.0
52 | 100
< 1.0
300 | 53
< 1.0
140 | 15
< 1.0
38 | 11
< 1.0
30 | 33
< 1.0
120 | 31
< 1.0
72 | 32
< 1.0
28 | 37
< 1.0
39 | 35
< 1.0
200 | 34
< 1.0
63
 32
< 1.0
36 | 36
< 1.0
37 | 26
< 1.0
52 | 29
< 1.0
32 | 28
< 1.0
32 | 31
< 1.0
39 | | Monoaromatics & Oxygenates
Berusne
Tolume | µg/kg 5
µg/kg 5 | < 5.0
< 5.0 5.0
< 5.0 | < | Ethylbenzane
g & m-oylane
g-xylane | h8/s8 2
h8/s8 2 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | MTBE (Nethyl Tertiary Butyl Ether) Petroleum Hydrocarbons TPH-CWG - Alphatic >ECS - ECS _{101 100 86} | melle 0.001 | , | < 0.001 | < 5.0 | | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | | TPH-CWG - Alphatic >EC6 - EC8 _{M, 10, IL}
TPH-CWG - Alphatic >EC8 - EC10 _{M, 10, IL}
TPH-CWG - Alphatic >EC10 - EC12 _{M, 11, IL} | mg/kg 0.001
mg/kg 0.001
mg/kg 0.001
mg/kg 1 | | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
2.3 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
1.3 | < 0.001
0.99
59 | < 0.001
0.1
48 | < 0.001
< 0.001
< 1.0 | TPH-CWG - Alphatic > EC12 - EC16 _{M Cl 10 A}
TPH-CWG - Alphatic > EC16 - EC11 _{M Cl 10 A}
TPH-CWG - Alphatic > EC11 - EC35 _{M Cl 10 A}
TPH-CWG - Alphatic (EC5 - EC35) _{M Cl 10 A} | mg/kg 2
mg/kg 8
mg/kg 8
mg/kg 8 | < 2.0
< 8.0
37 | 3.1
22
180
200 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | 26
32
110 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | 17
71
130
220 | 17
64
170
250 | 250
230
340
880 | 220
230
310
800 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
90
93 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | 9.2
30
44
83 | 130
340
550
1000 | < 2.0
< 8.0
< 8.0 | < 2.0
< 8.0
< 8.0 | | TPH-CWG - Alphatic (ECS - EC35) _{BI, GE+HE, ID, AL} . TPH-CWG - Aromatic >ECS - EC7 _{FIL ID, AL} TPH-CWG - Aromatic >EC7 - EC8 _{341 30 AL} | mg/kg 0.001
mg/kg 0.001 | < 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 10
< 0.001
< 0.001 | < 0.001
< 0.001 | < 10
< 0.001
< 0.001 | | < 10
< 0.001
< 0.001 | < 0.001
< 0.001 | | TPH-CWG - Aromatic >EC8 - EC10 _{-RC,10,85}
TPH-CWG - Aromatic >EC10 - EC12 _{-RC,01,85,85}
TPH-CWG - Aromatic >EC12 - EC16 _{-RC,01,10,85} | mg/kg 0.001
mg/kg 0.001
mg/kg 1
mg/kg 2 | | < 0.001
1.3
8.6 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
1.7
21
29 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
6.6 | < 0.001
< 1.0
2.6 | 0.021
45
230 | < 0.001
< 0.001
9.8
100
220 | < 0.001
4.3
8.2 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
49
320 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10 | | TPH-CWG - Aromatic >EC16 - EC21 _{ER CL ED, ME}
TPH-CWG - Aromatic >EC21 - EC35 _{ER CL ED, ME}
TPH-CWG - Aromatic (EC5 - EC35) _{ER CL-ER, ED, ME} | mg/kg 2
mg/kg 33
mg/kg 33
mg/kg 33 | < 10
53
58 | 42
110
170 | < 10
< 10
< 10 | < 10
< 10
< 10 | 29
110
160 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | 45
170
220 | 35
170
210 | 420
680
1400 | 220
300
630 | < 10
< 10
13 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
36
37 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10
< 10 | 13
28
42 | 320
790
1200 | < 10
< 10
< 10 | < 10
< 10
< 10 | | VOCs
Chloromethane
Chloroethane | hilyd 2 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | | Bromomethane
Vinyl Chloride
Trichlorofluoromethane | µg/kg 5
µg/kg 5
µg/kg 5 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,1-Dichlorostheine 1,1,2-Trichloro 1,2,2-Trifluorostheine Clis-1,2-dichlorostheine MTBE (Nethyl Tertiary Butyl Ether) | рајка 5
рајка 5
рајка 5
рајка 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 11-10-thoosethine 2,2-Oichloropropane Trichloromethane | µg/kg 5
µg/kg 5 | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,1,1-Trichloroethane
1,2-Dichloroethane
1,1-Dichloropropene | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Trans-1,2-dichloroethene
Bersene
Tetrachloromethane | | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | <5.0
<5.0
<5.0
<5.0 | | 0.2 >
0.2 >
0.2 > | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,2-Dichloropropane Frichloroethiene Dibromomethiene Bromodichloromethiane | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | Cis-1,3-dichloropropene
Trans-1,3-dichloropropene
Toluene | рајка 5
рајка 5
рајка 5 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,1,2-Trichloroethane
1,3-Dichloropropane
Discementionemistane
Tetrachloroethane | µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,2-Dibromoethine
Chlorobenzene
1,1,1,2-Tetrachloroethine | | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | <
5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | Ethybanaen
p.8.m.Xylene
Styrene | pg/kg 5
 pg/kg 5
 pg/kg 5 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | o-Xylene
1,1,2,2-Tetrachloroethane
isopropylberoene | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Bromobenzene
n-Propylbenzene
2-Chlorotoluene | рајка 5
рајка 5
рајка 5
рајка 5 | | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,3,5-Trimethybenzene
test &dyberozene
1,2,4-Trimethybenzene | | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | sec-Buty/benzene
1,3-Dichlorobenzene
p-Isopropy/tobene | µg/kg 5
µg/kg 5
µg/kg 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 1,2-Dichloroberusine
1,4-Dichloroberusine
3utybenzeine
1,2-Ditromo-3-chloropropane | | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1.2,4-Trichlorobersame
Nexachlorobutadiene
1,2,3-Trichlorobersame | раўа 5
раўа 5
раўа 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | SVOCs
Aniline | mg/kg 0.1 | < 0.1* | < 0.1 | < 0.1 | < 0.1 | < 0.1* | 0.5 | 0.7 | 0.5 | < 0.1* | 0.3* | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 2-Chlorophenol
Bis(2-chlorophyl)sther
1,3-0ichlorobinzane | mg/kg 0.1
mg/kg 0.2 | < 0.1*
< 0.2* | < 0.1 | < 0.1 | < 0.1 | < 0.1* | < 0.1 | < 0.1 | < 0.1 | < 0.1*
< 0.2* | < 0.1°
< 0.2° | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 1,2-Dichlorobenzene
1,4-Dichlorobenzene
8is(2-chloroisopropyl)ether | mg/kg 0.2
mg/kg 0.1
mg/kg 0.2
mg/kg 0.1
mg/kg 0.3 | < 0.2* | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2*
< 0.1*
< 0.2*
< 0.1*
< 0.3* | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2*
< 0.1*
< 0.2*
< 0.1*
< 0.3* | < 0.2°
< 0.1°
< 0.2°
< 0.1°
< 0.3° | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | <02
<0.1
<0.2
<0.1
<0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | <02
<0.1
<0.2
<0.1
<0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.2
< 0.1 | | 1,2 Oct bisobename 1,4 Oct bisobename 16(2) bis | mg/kg 0.05 | < 0.05* | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | < 0.3
< 0.06
< 0.3
< 0.2
< 0.2 | < 0.3*
< 0.05*
< 0.3*
< 0.2* | < 0.05 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05 | < 0.05* | < 0.3*
< 0.05*
< 0.3*
< 0.2* | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2 | < 0.05 | < 0.05 | < 0.3
< 0.06
< 0.3
< 0.2
< 0.2 | < 0.05 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2 | | Sophorone
2-Mirophenol
2,4-Directhylphenol | mg/kg 0.2
mg/kg 0.2
mg/kg 0.3
mg/kg 0.3 | < 0.2*
< 0.2*
< 0.3*
< 0.3* | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | <0.2
<0.3
<0.3 | < 0.2*
< 0.3*
< 0.3* | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2*
< 0.2*
< 0.3*
< 0.3* | < 0.2*
< 0.3*
< 0.3* | < 0.2
< 0.3
< 0.3 | < 0.3 | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | <0.2
<0.3
<0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | < 0.2
< 0.3
< 0.3 | | Bis(2-chicrosthosy)methane
1,2,4-Trichicrobersene
Naphthalene | mg/kg 0.3
mg/kg 0.3
mg/kg 0.05
mg/kg 0.3 | < 0.3* | < 0.3
< 0.3
1.7 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
0.18 | < 0.3*
< 0.3*
0.78* | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3*
< 0.3*
0.1*
< 0.3* | < 0.3*
< 0.3*
0.1*
< 0.3* | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.05 | < 0.3
< 0.05 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | | Naphthalene
2,4-Dictionophanol
4-Orioroaniline
Heradirochataliene
4-Orioro-3-methylphenol | mg/kg 0.1
mg/kg 0.1
mg/kg 0.1 | < 0.1* | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1*
< 0.1*
< 0.1* | < 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1°
< 0.1°
< 0.1° | < 0.1°
< 0.1°
< 0.1° | < 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | | 2,4,5-Trichlorophenol
2,4,5-Trichlorophenol
2-Methylnaphthalene | mg/kg 0.1
mg/kg 0.2
mg/kg 0.1 | < 0.1*
< 0.2*
0.6* | < 0.1
< 0.2
1.8 | < 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
0.1 | < 0.1°
< 0.2°
1.1° | < 0.1
< 0.2
0.1 | < 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.1 | < 0.1°
< 0.2° | < 0.1*
< 0.2*
0.1* | < 0.1
< 0.2
< 0.1 | 2-Chloronaphthalene
Dimethylphthalate
2,6-Dintrotoluene | mg/kg 0.1
mg/kg 0.1
mg/kg 0.1
mg/kg 0.05 | < 0.1*
< 0.1*
< 0.1* | < 0.1
< 0.1
< 0.1
0.14 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.05 | < 0.1°
< 0.1°
< 0.1°
0.18° | < 0.1
<
0.1
< 0.1
< 0.05 | < 0.1
< 0.1
< 0.1
< 0.05 | < 0.1
< 0.1
< 0.1
< 0.05 | < 0.1°
< 0.1°
< 0.1°
0.05° | < 0.1°
< 0.1°
< 0.1° | < 0.1
< 0.1
< 0.1
< 0.05 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.1
< 0.05 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | | Acenaphthylene
Acenaphthene
2,4-Dinitrotoluene
Dibenzofuran | mg/kg 0.05
mg/kg 0.2
mg/kg 0.2 | 0.12*
< 0.2*
< 0.2* | 2.8
< 0.2
1.4 | < 0.05
< 0.05
< 0.2
< 0.2 | 0.2
< 0.2
< 0.2 | 0.21*
< 0.2*
0.5* | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05*
< 0.2*
< 0.2* | < 0.05*
< 0.05*
< 0.2*
< 0.2* | 0.59
< 0.2
< 0.2 | 0.53
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | 0.12
< 0.2
< 0.2 | < 0.05
< 0.2 | < 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | < 0.05
< 0.05
< 0.2
< 0.2 | | 4-Chicrophenyl phenyl ether
Diethyl phthalate | mg/kg 0.3
mg/kg 0.2
mg/kg 0.2 | < 0.3*
< 0.2*
< 0.2* | < 0.3
< 0.2
< 0.2 | < 0.3
< 0.2
< 0.2 | < 0.3
< 0.2
< 0.2 | < 0.2*
< 0.2* | < 0.3
< 0.2
< 0.2 | < 0.3
< 0.2
< 0.2 | < 0.3
< 0.2
< 0.2 | < 0.3*
< 0.2*
< 0.2* | < 0.2*
< 0.2* | < 0.3
< 0.2
< 0.2 0.2
< 0.2 | | Fluorene
Azoberszene
Beomophienyi phenyi ether
Havarhirenhamane | mg/kg 0.05
mg/kg 0.3
mg/kg 0.2
mg/kg 0.3 | < 0.3*
< 0.2* | 2.3
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.16
< 0.3
< 0.2
< 0.3 | 0.23*
< 0.3*
< 0.2*
< 0.3* | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05*
< 0.3*
< 0.2*
< 0.3* | < 0.05*
< 0.3*
< 0.2* | 0.66
< 0.3
< 0.2
< 0.3 | 0.54
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.1
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2 | < 0.05
< 0.3
< 0.2
< 0.3 | | rentratione Placemen Audionization Horizoniane Berencoplinary ophiany other Horizoniane Placemaniferrationization Placemaniferration Placemaniferration Arthropicome Cartaloxia Dibusyl gibt halate Arthropicome Arthropicome | mg/kg 0.05
mg/kg 0.05
mg/kg 0.3 | 0.85*
0.27* | 16
3.6
1.4 | 0.23
0.07 | 0.23
0.21 | 1.4*
0.67* | 0.19
0.11 | 0.1
< 0.05 | 0.1
0.07 | 0.09* | 0.78*
0.23* | 1.1
0.15 | 1.7
0.66 | 0.05
< 0.05 | < 0.05 | < 0.05
< 0.05 | < 0.05 | 2.2
0.47
< 0.3 | < 0.05
< 0.05
< 0.3 | < 0.05
< 0.05 | < 0.05
< 0.05 | 0.13
< 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | | Dibutyl phthalate
Anthraquinone
Pluoranthene | mg/kg 0.2
mg/kg 0.3
mg/kg 0.55 | < 0.2*
< 0.3* | < 0.2
1.5 | < 0.2
< 0.3
0.43 | < 0.2
< 0.3
0.95 | < 0.2*
0.5* | < 0.2
< 0.3 | < 0.2
< 0.3
0.22 | < 0.2
< 0.3
0.28 | < 0.2*
< 0.3* | < 0.2*
< 0.3* | < 0.2
< 0.3 | < 0.2
< 0.3 | < 0.2
< 0.3
0.09 | < 0.2
< 0.3
0.22 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
0.26 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3 | < 0.2
< 0.3
0.1
0.09 | | Arthraquinone Fluorathene Propere Budy bendy phthaliste Bendy bendy anthracene | mg/kg 0.05
mg/kg 0.3
mg/kg 0.05 | 1.1*
< 0.3*
0.56* | 12
13
< 0.3
5.7
4.7 | 0.48
< 0.3
0.25 | 1.1
< 0.3
0.51 | 3.2*
< 0.3*
1.2* | 0.5
< 0.3
0.23 | 0.23
< 0.3
0.1 | 0.36
< 0.3
0.14 | 0.67*
< 0.3*
0.32* | 1*
< 0.3*
0.67* | 0.4
< 0.3
0.4 | 2.4
< 0.3
1.1 | 0.09
< 0.3
< 0.05 | 0.21
< 0.3
0.12 | < 0.05
< 0.3
< 0.05 | < 0.05
< 0.3
< 0.05 | 3.1
< 0.3
1.6 | < 0.05
< 0.3
< 0.05 | < 0.05
< 0.3
< 0.05 | < 0.05
< 0.3
< 0.05 | 0.28
< 0.3
0.13 | < 0.05
< 0.3
< 0.05 | < 0.05
< 0.3
< 0.05 | < 0.3 | | Senzic(a)anthracene Chrysene Gerysell (fluorenthene Berock(fluorenthene Berock(fluorenthene Berock(a)prene Indene(1,2,3-cd)pyrene | mg/kg 0.05
mg/kg 0.05
mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | 0.71*
1*
0.39*
1.1* | 4.2 | 0.24
0.25
0.12
0.23
0.11 | 0.46
0.42
0.22
0.45
0.18 | 1.6*
1.4*
0.49*
0.87*
0.41* | 0.27
0.22
0.16
0.22
0.1 | 0.09
0.1
0.05
0.11
< 0.05 | 0.13
0.12
0.06
0.13 | 0.42*
0.55*
0.15*
0.39*
0.27* | 0.51*
0.62*
0.3*
0.46* | 0.43
0.1
0.05
< 0.05
< 0.05 | 1
0.96
0.44
1 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | 0.1
0.13
0.05
0.12
0.05 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | 1.5
1.4
0.85 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | 0.2
0.15
0.07
0.14 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
0.06
< 0.05 | | Indiano (1,2,3-cd) pyrene
Dibera (a,h) anthracene
Berac (ghi) perylene | mg/kg 0.05
mg/kg 0.05
mg/kg 0.05 | 1.1°
0.75°
0.14°
1° | 2.5
4.6
1.9
0.53
2.7 | 0.11
< 0.05
0.16 | 0.05 | 0.41*
0.11*
0.5* | 0.1
< 0.05
0.14 | < 0.05
< 0.05
0.07 | 0.13
0.05
< 0.05
0.09 | 0.05* | 0.46*
0.22*
0.07*
0.33* | < 0.05
< 0.05
< 0.05 | 1
0.43
< 0.05
0.61 | < 0.05
< 0.05
< 0.05 | < 0.05 | < 0.05 | < 0.05
< 0.05
< 0.05 | 0.59
0.17
0.71 | < 0.05
< 0.05
< 0.05 | < 0.05 | < 0.05
< 0.05
< 0.05 | 0.14
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | | · | _ | _ | | _ | _ | _ | _ | | _ | | | | | _ | | | _ | | | | _ | | | _ | | Benotify Dispersions (1)5 – Unsudated searce (1,5 – Insufficient Sample 10 – Not Detected "Data reported searce-offeed does to quality corted parentiels failure and have been occapted and the failure justified as having no supplicate irreset namely data, surrolls was offered as having no supplicate irreset on surrolls data, numrolls was offered and results are estimated from an ethological control in-Neuroll social data and results are estimated from an ethological control in-Neuroll social data from the "Over range data, surrolls was offered and results are estimated from an ethological collection." In-Neurol social data from the | Lab Sample Number
Sample Reference
Depth (m) | | ECBH1
3.00 | 2533911
ECBH1
4.00 | 2533912
ECBH1
6.00 | | | | | | | | | | 2533922
ECBH4
4.00 | | 2533924
ECBH5
3.00 | 2533925
ECBH5
4.00 | 2533926
ECBHS
6.00 | 2533927
EC8+6
3.00 | 2533928
EC8H6
4.00 | 2533929
ECBH6
6.00 | 2533930
ECBH7
3.00 | 2533931
ECBH7
4.00 | 2533932
ECBH7
6.00 | 25339933
ECBH7
7.00 | 2533934
EC8H8
3.00 | 2533935
ECBH8
4.00 | 2533936
ECBH8
6.00 | |---|---
--|--|--|--|---|--|--|--|---|--|--|--|---|--|--|--|--|--|---|--|---|--|--|--|---|---|---| | Analytical Parameter
(Soil Analysis)
Store Cortest | (Plant Update o) Limit of detection of Units | Assessment of the control con | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | <0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | Moliture Content
Total mass of sample received | % 0.01
kg 0.031 | 11 1 | 6.7 | 14 | 10 | 8.7 | 17 | 18 | 5.9 | 5.8 | 13 | 13 | 8.5 | 11 | 19 | 14 | 12 | 17 | 8 | 6.5 | 16
1 | 6.4 | 6 | 21 | 19 | | 10 | 7.5 | | Asbestos in Soil Sonen / Identification Name Asbestos in Soil Asbestos Analyst ID General Imorganics IH - Automated | Type N/A N/A N/A N/A N/A N/A | Not-detect
LFT | 8.3 | 6.9 | 8.5 | Not-detected
LFT | 8.2 | 7.7 | Not-detected
LFT
9.7 | Not-detected
PDO
7.9 | 7.7 | N/A 8.1 | 8.2 | Not-detected
PDO | 7.9 | 7.9 | Not-detected
PDO
7.9 | 6.3 | 7.9 | Not-detected
PDO
7.5 | 6.9 | 7.8 | Not-detected
PDO | 7.7 | 7.7 | Not-detected
PDO
8.1 | Not-detected
PDO
8.8 | 7.9 | | Brater Soluble Sulphate as SO4 16hr extraction (2:1) Brater Soluble SO4 16hr extraction (2:1 Leachate Equivi-
Brater Soluble SO4 16hr extraction (2:1 Leachate Equiv-
Brater Soluble SO4 16hr extraction (2:1 Leachate Equiv- | | 7 7.6 | 59
0.03
29.5 | 5.4 | 130
0.067
67.2 | 6.9 | 170
0.084
83.5 | 7.8 | 170
0.084
84.4 | 5.9 | 55
0.027
27.4 | 6.8 | 190
0.093
93.3 | | 410
0.21
207 | 64
0.032
32.1
7.4 | 8.9 | 570
0.29
287
6.8 | 82
0.041
41.2 | 6.7 | 38
0.019
19
5.2 | 66
0.033
32.8 | 7.2 | 320
0.16
162 | 7.9 | 100
0.05
50.1 | 45 | 33
0.017
16.7 | | Cadmium (aqua regia extractable) Chromium (hosavalent) Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) | mg/kg 1 3
mg/kg 0.2 1
mg/kg 1.8 6
mg/kg 1 9;
mg/kg 1 9;
mg/kg 1 24
mg/kg 1 24 | < 1.8
0 15
15
0 29 | < 0.2
< 1.8
38
38
42
9.5 | < 0.2
< 1.8
29
29 | 0.4
< 1.8
30
31
17 | < 0.2
< 1.8
35
35
35
3.7
12 | < 0.2 | < 0.2
< 1.8
26
26
3.8
16 | < 0.2
< 1.8
27
27
27
8.9
26 | < 0.2
< 1.8
31
31
2.6
4.8 | < 0.2
< 1.8
30
30
30
3.7
8.7 | < 0.2
< 1.8
33
33
4.4
12 | < 0.2
< 1.8
31
32
14
71 | < 0.2 | < 0.2
< 1.8
35
35
5.3
8.3 | < 0.2
< 1.8
29
29
22
62 | < 0.2
< 1.8
38
38
5 | < 0.2
< 1.8
23
23
6.1
7.2 | 0.4
< 1.8
33
33
30
46 | < 0.2
< 1.8
26
26
9 | < 0.2
< 1.8
25
25
28
13 | < 0.2
< 1.8
28
28
30
160 | < 0.2
< 1.8
33
33
5.1
13 | < 0.2
< 1.8
28
28
28
8.9
14 | < 0.2
< 1.8
35
35
6.7
17 | 0.3
< 1.8
13
13
8.1 | < 0.2 | < 0.2
< 1.8
30
30
3.5
8.5 | | Lead (appa regia entrictable) Mercury (appa regia entractable) Michal (appa regia entractable) Melosinism (appa regia entractable) Zinc (appa regia entractable) Zinc (appa regia entractable) | mg/kg 1 21
mg/kg 0.3 4
mg/kg 1 1:
mg/kg 1 2:
mg/kg 1 27 | 0 15 | < 0.3 | < 0.3 | 0.5
39
<1.0
190 | < 0.3
40
< 1.0
46 | | < 0.3
29
< 1.0
39 | < 0.3
30
< 1.0
60 | < 0.3
35
< 1.0
28 | < 0.3
33
< 1.0
39 | < 0.3
36
< 1.0
42 | < 0.3
37
< 1.0
210 | | < 0.3 | < 0.3
35
< 1.0
94 | <0.3
43
<1.0
67 | < 0.3
27
< 1.0
29 | 0.4
21
< 1.0
140 | 0.8
30
< 1.0
45 | < 0.3
28
< 1.0
28 | 0.5
33
< 1.0
150 | < 0.3
38
< 1.0
43 | < 0.3
32
< 1.0
43 | < 0.3
38
< 1.0
47 | < 0.3
12
< 1.0
44 | < 0.3
13
< 1.0
29 | < 0.3
33
< 1.0
30 | | Monoaromatics & Oxygenates* Senzere Tolume Sthythanane 3 & moviene | μαίλα 5 11
μαίλα 5 230
μαίλα 5 110
μαίλα 5 110
μαίλα 5 120
μαίλα 5 1400
μαίλα 5 | 000 < 5.0
000 < 5.0
000 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | | Petroleum Hydrocarbons TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} TPH-CNG - Aliphate > ECS - ECS _{M. 10. A.} | mg/kg 0.001 7
mg/kg 0.001 2:
mg/kg 0.001 6
mg/kg 1 3:
mg/kg 2 24 | 5 0.2
0 63
00 360 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | 21 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0 | < 0.001
8.8
98
500 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 0.001
< 1.0
< 2.0 | < 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
40 | < 2.0 | 29
< 1.0
110 | < 2.0 | < 0.001
< 1.0
< 2.0 | < 0.001
1.1
< 2.0 | < 0.001
< 0.001
<
0.001
< 1.0
< 2.0 | < 0.001
110
340 | < 0.001
< 0.001
< 0.001
24
130 | < 0.001
< 1.0
< 2.0 | | TPH-CMG - Apparet NCLL* CLL* 0.00 m m m.
TPH-CMG - Alphate SCLL = CCL m m m m.
TPH-CMG - Alphate SCLL = CCS m m m m.
TPH-CMG - Alphate SCLL = CCS m m m m.
TPH-CMG - Alphate SCLL = CCS = CCS m m m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = CCS = CCS m. m. m.
TPH-CMG - Acoustic > CCS = | mg/kg 8 931
mg/kg 8
mg/kg 33
mg/kg 0.001 14
mg/kg 0.001 25 | 52
720
0 < 0.001
0 < 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 8.0
< 10
< 0.001
< 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | | < 8.0
36
< 0.001
< 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 0.001 | < 0.001 | < 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 8.0
< 10
< 0.001
< 0.001 | 420
1700
< 0.001
< 0.001 | < 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 0.001 | < 8.0
< 10
< 0.001
< 0.001 | 73
83
200
< 0.001
< 0.001 | < 0.001 | < 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 8.0
< 8.0
< 10
< 0.001
< 0.001 | < 0.001 | < 8.0
< 10
< 0.001
< 0.001 | < 0.001 | 74
15
250
< 0.001
< 0.001 | < 0.001 | | [9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10 10} at
[9H-CMG - Aromatic x ECS - ECS 0 _{10 10 10 10 10 10 10 10 10 10 10 10 10 1} | mg/kg 0.001 8
mg/kg 1 11
mg/kg 2 32
mg/kg 30 5
mg/kg 30 15
mg/kg 30 15 | 0.001
0 3.7
0 92 | < 0.001
< 1.0
< 2.0 | < 1.0
< 2.0
< 10 | < 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 2.0
< 10
< 10 | < 10 | < 1.0
< 2.0 | < 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 1.0
< 2.0
< 10
< 10 | < 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 1.0
< 2.0
< 10 | < 2.0 | 80
320 | < 1.0
< 2.0 | < 0.001
< 1.0
< 2.0
< 10
21
24 | < 2.0 | < 1.0
< 2.0
< 10 | 10 | < 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | 63 | < 2.0 | < 2.0 | < 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 1.0
< 2.0
< 10
< 10 | 13
110
110
36 | < 0.001
4.2
54
52
< 10
120 | < 2.0 | | VOUL* Chloromethane Chloromethane Eveniormathane Vinyl Chloride Tirchloromhuneumhane Lil-Olichhosethane Lil-Olichhosethane | µghg 5 | 17 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1,1,2-Trichioro 1,2,2-Trifluoroethane Cis-1,2-dichloroethane MTBE (Methyl Tertiary Butyl Ether) 1,1-Dichloroethane 2,2-Dichloropropane | µghg 5 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Firidocomethane 1,1,1-Tridocomethane 1,2-Girldocosthane 1,2-Girldocosthane 1,1-Girldocosthane 1,1-Girldocosthane Bersane First-1,2-Girldocosthane Bersane Fistacklocomethane | pg/kg 5 1 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1,2-Sichlorspropane Tickrosothene Dibromostihane Stomodichlorsensthane Cis-1,3-dichlorspropane Trans-1,3-dichlorspropane | | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Tobare 1,1,2-Trichlorosthane 1,3-Dichloropropane Dibromodiforomothane Tatachlorosthane 1,2-Dichomodifane | | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Chlorobenoone Lity Turnschloroethane Ethylbanoone p & mrXylane Sylane Tribonomenthane Tribonomenthane | | 0 . | < 5.0
< 5.0
< 5.0
<
5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | b-Xylene 1,1,2,2 Tetrachironethane Sigorgoyllensarie FormobianiePopyllensarie 2-Discrobianie 4-Discrobianie | | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < \$0
< \$0
< \$0
< \$0
< \$0
< \$0
< \$0
< \$0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1.3,5-Trimethybenzene bart-burytkenzene bart-burytkenzene 1.2-4-Trimethybenzene sicc-burytkenzene 1.3-Octionobanzene >-Sopropytikobare | | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1.2 Octridonobarranie 1.4 Octridonobarranie 1.4 Octridonobarranie 1.2 Obromo-3-disorpropaine 1.2.3 Tridonobarranie Hosardionobatadiene 1.2.3 -Tridotobarranie | µg/kg 5 550
 µg/kg 5 150
 µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5
 µg/kg 5 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | SVOCa
Lestina
Participa
2-Chicosphenol
SIGC-4-forcestry(juther
1,3-Chicosphenoles | mg/kg 0.1
mg/kg 0.2 52
mg/kg 0.1 2
mg/kg 0.2
mg/kg 0.2 | 02
0 < 0.2
< 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1
< 0.2 | < 0.1 | < 0.1
< 0.2
< 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1 | 0.3
< 0.2
< 0.1
< 0.2
0.7 | < 0.1 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1
< 0.2 | < 0.1 | < 0.1 | < 0.1
< 0.2 | | L_3.ciritorobanzanie L_3.ciritorobanzanie L_4.ciritorobanzanie L_4.ciritorobanzanie Su(2-tritorobanzanie Su(2-tritorobanzanie Su(2-tritorobanzanie Sucobanzanie Sucobanzanie Sucobanzanie | mg/kg 0.1
mg/kg 0.1
mg/kg 0.2
mg/kg 0.1
mg/kg 0.3
mg/kg 0.35
mg/kg 0.35 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.06 | < 0.1
< 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05 | < 0.1
< 0.2
< 0.1 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | <0.2
<0.1
<0.2
<0.1
<0.3
<0.05
<0.3 | <0.2
<0.1
<0.2
<0.1
<0.3
<0.05
<0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2 | < 0.2
< 0.1
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | < 0.1
< 0.2
< 0.1 | < 0.2
< 0.1
< 0.2
< 0.1
< 0.3
< 0.05
< 0.3 | | venocentrarie Nadhrijchand Isophorone 2.4 Eropherol 2.4 Cimethrylphonis BIG2 - Höroschroylmsthane 1.2,4 Trichlerobersarie | mg/kg 0.2
mg/kg 0.2
mg/kg 0.3
mg/kg 0.3 | < 0.3
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | <0.3
<0.2
<0.2
<0.3
<0.3
<0.3 | < 0.05
< 0.05
< 0.2
< 0.2
< 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | < 0.3
< 0.2
< 0.2
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | <0.3
<0.2
<0.2
<0.3
<0.3
<0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | <0.2
<0.2
<0.3
<0.3
<0.3
<0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.2
< 0.2
< 0.3
< 0.3
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3 | | Naphthalene
2,4-Dichlorophenol
4-Chloroaniline
Headribrobutadiene
4-Chloro-3-methylphinrol | mg/kg 0.3 mg/kg 0.3 mg/kg 0.05 5 mg/kg 0.05 5 mg/kg 0.1 mg/kg 0.1 0 mg/kg 0.1 0 mg/kg 0.1 0 | 0 0.17
0 < 0.3
< 0.1
7 < 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< 0.1 | < 0.05
< 0.3
< 0.1
< | 2.4,5-Trichlorophenol
2.4,5-Trichlorophenol
2.4,6-Trichlorophenol
2.4 Martyniphtablene
2.5-Toronaphtablene
2.5-Toronaphtablene
2.5-Toronaphtablene | mg/kg 0.1 15
mg/kg 0.2 15
mg/kg 0.1
mg/kg 0.1
mg/kg 0.1
mg/kg 0.1
mg/kg 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.2
0.1
< 0.1
< 0.1
< 0.1 | | < 0.1
< 0.2
1.9
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.2
0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.2
< 0.1
< 0.1
< 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
< 0.2
< 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.1 | | Acimaptithylane Acimaptithene 2,4-Dinitrotolusne Diservorfurian 4-Chicrophenyl phenyl ether | mg/kg 0.05 44
mg/kg 0.05 51
mg/kg
0.2
mg/kg 0.2
mg/kg 0.3
mg/kg 0.3 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | | 0.44
< 0.05
< 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3 | < 0.05
< 0.05
< 0.2
< 0.2
< 0.2
< 0.2 | < 0.2
< 0.3 | < 0.05
< 0.05
< 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3 | | < 0.05
0.05
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.2
< 0.2
< 0.3 | | < 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | < 0.2 | < 0.2
< 0.2
< 0.3 | < 0.05
< 0.05
< 0.2
< 0.2
< 0.3
< 0.2 | < 0.2
< 0.2
< 0.3 | < 0.2
< 0.2
< 0.3 | | < 0.2
< 0.2
< 0.3 | | Siethyl phthalata 4 Mezoariline Flacorine Raceirane Assertane Beromopheryl phenyl ether Petrachirene Petrachirene Petrachirene | mg/kg 0.2
mg/kg 0.05 44
mg/kg 0.3
mg/kg 0.3
mg/kg 0.3
mg/kg 0.3 3
mg/kg 0.05 54 | < 0.2
0 < 0.05
< 0.3
< 0.2
3 < 0.3
0 0.67 | < 0.2
< 0.3
< 0.05 | < 0.3
< 0.2
< 0.3
< 0.05 | < 0.2
0.19
< 0.3
< 0.2
< 0.3
0.64 | < 0.2
< 0.3
< 0.05 | < 0.2
0.12
< 0.3
< 0.2
< 0.3
0.21 | < 0.2
< 0.3
0.05 | < 0.2
< 0.3
0.07 | < 0.3
< 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
< 0.05 | < 0.3
< 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
0.07 | < 0.2
< 0.3
3.2 | < 0.2
< 0.3
< 0.05 | < 0.2
0.05
< 0.3
< 0.2
< 0.3
0.25 | < 0.2
< 0.3
0.11 | < 0.3
< 0.2
< 0.3
0.05 | < 0.2
< 0.05
< 0.3
< 0.2
< 0.3
0.07 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
0.55 | < 0.2
< 0.3
0.07 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.05
< 0.3
< 0.2
< 0.3
0.15 | < 0.3
< 0.2
< 0.3
0.12 | < 0.3
< 0.2
< 0.3
0.54 | < 0.2
< 0.05
< 0.3
< 0.2
< 0.3
0.23 | < 0.2
< 0.3
< 0.05 | | Arthrosone Carbosole Carbosole Distory phralate Arthrosole Arthrosole Purcarathere Pymen Pymen Ellytomy phthalate | mg/kg 0.3
mg/kg 0.2
mg/kg 0.3
mg/kg 0.05 59
mg/kg 0.05 12 | < 0.3
< 0.2
< 0.3
0 0.47
0 0.59 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
< 0.05
< 0.05 | 0.65
< 0.3
< 0.2
< 0.3
1
0.71 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.3
0.06
0.09 | < 0.05
< 0.3
< 0.2
< 0.3
0.07
0.08 | < 0.05
< 0.3
< 0.2
< 0.3
0.08
0.08 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.05
< 0.3
< 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.05
0.05 | < 0.2
< 0.3
0.08
0.08 | < 0.3
0.47
0.7 | < 0.2
< 0.3
< 0.05
< 0.05 | 0.09
< 0.3
< 0.2
< 0.3
0.68
0.81 | < 0.2
< 0.3
0.24
0.23 | < 0.3
0.13
0.13 | < 0.05
< 0.3
< 0.2
< 0.3
0.11
0.1 | < 0.2
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.12
0.15 | < 0.05
< 0.3
< 0.2
< 0.3
0.08 | < 0.2
< 0.3
< 0.05
< 0.05 | 0.05
< 0.3
< 0.2
< 0.3
0.22
0.23 | < 0.3
0.16
0.17 | < 0.2
< 0.3
0.29
0.37 | 0.17
0.17 | < 0.05
< 0.05 | | Eury benny ophibilate Senrucia pithalate Senrucia pithalate Chrystere Senrucio fluoranthane Senrucio fluoranthane Bennucia pyrene Senrucia pyrene Seldonici (1,5) - 50 diprene | mg/kg 0.3
mg/kg 0.05 1
mg/kg 0.05 2
mg/kg 0.05 3
mg/kg 0.05 9
mg/kg 0.05 2
mg/kg 0.05 2 | < 0.3
0.21
0.25
0.25
0.24
0.13
7 0.19
0.13 | < 0.3
< 0.06
< 0.06
< 0.06
< 0.06
< 0.06
< 0.06 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
0.47
0.4
0.37
0.19
0.32
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.05 | | | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
0.19
0.36
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
0.36
0.4
0.65
0.23
0.63
0.42 | < 0.3
0.11
0.14
0.11
< 0.05
0.1
0.05 | < 0.3
0.07
0.07
0.07
< 0.06
0.05
< 0.05 | < 0.3
< 0.05
0.06
0.05
< 0.05
0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | | < 0.3
0.1
0.11
0.08
< 0.05
0.06
< 0.05 | < 0.3
0.07
0.09
0.07
< 0.05
0.06
< 0.05 | < 0.3
0.12
0.12
0.08
0.07
0.09
< 0.05 | < 0.3
0.06
< 0.05
0.05
< 0.05
< 0.05
< 0.05 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | | enenta(1,4,2-ca)pyrene
Diberu(a,h)anthracene
Beruo(ghi)perykine | mg/kg 0.05 3
mg/kg 0.05 0.
mg/kg 0.05 3 | 0.13
5 < 0.05
0 0.17 | < 0.05
< 0.05
< 0.05 0.42
0.07
0.56 | 0.05
< 0.05
0.07 | < 0.05
< 0.05
< 0.05 0.05 | Denoticy/spyryhene "Cutan reported unacceedated due to quality control parameter failure associated with this result, other chacks and the failure justfled as having no significant impact on sample data propriet U/S = Unsuitable Sample U/S = Insufficient Sample ND = Not Detected | Lab Sample Number
Sample Reference
Depth (m) | 253393
ECBH8
7.00 | 7 2533938
ECBH9
3.00 | 2533939
ECBH9
4.00 | 2533940
ECBH9
6.00 | 2533941
ECBH9
7.00 | 2533942
ECBH10
3.00 | 2533943
ECBH10
4.00 | 2533944
ECBH10
6.00 | 2533945
ECBH10
7.00 | 2533946
ECBH11
3.00 | 2533947
ECBH11
4.00 | 2533948
ECBH11
6.00 | 2533949
ECBH12
3.00 | 2533950
ECBH12
4.00 | 2533951
ECBH12
6.00 | 2533952
ECBH13
0.50 | 2533953
ECBH13
1.00 | 2533954
ECBH13
3.00 | 2533955
ECBH13
4.00 | 2533956
ECBH14
0.50 | 2533957
ECBH14
1.00 | 2533958
ECBH14
2.00 | 2533959
ECBH15
0.50 | 2533960
ECBH15
1.00 | 2533961
ECBH15
3.00 | 2533962
ECBH15
4.00 | 2533963
ECBH16
0.50 | |--|--|---|--|---|---|--|--|---|---|---|--|---|---|---|---|--|--|---|--|---|--|---|---|---|---|--|--| |
Analytical Parameter Si (Soil Analysis) # | Limit of detection | Stone Content 16 Moisture Content 16 Total mass of sample received kg | 0.1 < 0.1
0.01 20
0.001 1 | < 0.1
10
1 | < 0.1
5.9
1 | < 0.1
21
1 | < 0.1
17
1 | < 0.1
10
1 | < 0.1
12
1 | < 0.1
11
1 | < 0.1
11
1 | < 0.1
60
1 | < 0.1
7.1
1
Chrysotile-
Loose Fibres | < 0.1
8.7
1 | < 0.1
9.9
1 | 62
7.6
1 | < 0.1
11
1 | 9.2 | < 0.1
18
1 | < 0.1 | < 0.1
21
1 | < 0.1
7.1
1 | < 0.1 | < 0.1 | < 0.1 | < 0.1
8.4
1 | < 0.1
15
1 | < 0.1
15
1 | < 0.1 7.5 1 Amoste - Loose Fibres; Chrysotile - | | General Inornanies | | Not-detected
PDO | | -
N/A | | Not-detected
PDO | Not-detected
PDO | N/A
8.4 | N/A | Not-detected
SPU | Detected
SPU | | Not-detected
SPU | Not-detected
WEM | N/A | Not-detected
WEM | Not-detected
WEM | N/A | | Not-detected
WEM | | | Not-detected
WEM | Not-detected
WEM | N/A | N/A | Debris
Detected
SCA | | pri - Australiau maria dischale Sulphate as SS4 16th extraction (2:1) migric Water Soluble SO4 16th extraction (2:1 Leachate Equivales SO4 16th extraction (2:1 Leachate Equivales Maria Soluble Solub | N/A 7.9
2.5 -
0.00125 -
1.25 - | 94
0.047
46.9 | - | 130
0.065
64.5 | | 170
0.084
84.4 | | 100
0.051
50.7 | - | 250
0.12
124 | - | 8.3
140
0.069
68.8 | 82
0.041
41.2 | - | 8.2
73
0.037
36.5 | 7.6
870
0.44
437 | - | 390
0.19
193 | 6.4 | 7.6
0.0038
3.8 | - | 79
0.04
39.5 | 7.9
7.9
0.004
4 | | 19
0.0095
9.5 | | 8.7
0.0044
4.4 | | Cadmium (aqua regia extractable) mg/kg | 1 4.8
0.2 < 0.2
1.8 < 1.8
1 30
1 30
1 5.6
1 8.9 | < 1.8
11
11 | 5.7
< 0.2
< 1.8
28
28
2.3
4.1 | 35
< 0.2
< 1.8
26
27
160
160 | 6.6
< 0.2
< 1.8
31
31
4.3
9.3 | 9.7
< 0.2
< 1.8
12
12
32 | 9.3
< 0.2
< 1.8
43
43
22
16 | 5.3
< 0.2
< 1.8
33
33
33
33 | 7
< 0.2
< 1.8
36
36
4.3
7.5 | 14
< 0.2
< 1.8
14
15
96
80 | 23
1
<1.8
28
28
28 | 6.6
<0.2
<1.8
34
34
5.2
6.9 | 4.9
< 0.2
< 1.8
21
21
10 | 3.3
< 0.2
< 1.8
18
18
18 | 6.1
< 0.2
< 1.8
13
13
15
30 | 13
< 0.2
< 1.8
15
15
60
130 | 5.9
< 0.2
< 1.8
34
34
4.4
4.4 | 7.6
< 0.2
< 1.8
33
33
5 | 5.4
< 0.2
< 1.8
25
25
6.1
6.2 | 1.8
< 0.2
< 1.8
20
20
63
1.6 | 1.1
< 0.2
< 1.8
18
18
55 | 1.2
< 0.2
< 1.8
18
18
52
3.7 | 6.4
0.3
< 1.8
31
31
6.5
8.1 | 7.8
< 0.2
< 1.8
31
31
3.8
14 | 6.5
< 0.2
< 1.8
29
29
5.9
12 | 10
< 0.2
< 1.8
28
28
13
45 | 7.6
< 0.2
< 1.8
24
24
20 | | Marriary (anua renia antrartahla) moRo | | 13
< 0.3
11
< 1.0
24 | | | 9.3
< 0.3
34
< 1.0
39 | 32
34
0.5
13
< 1.0
58 | 16
< 0.3
33
< 1.0
30 | 3.3
4.9
< 0.3
37
< 1.0
32 | | | < 0.3 | | 10
14
< 0.3
27
< 1.0
40 | 7.9
< 0.3
21
< 1.0
71 | 30
< 0.3
18
< 1.0
64 | | < 0.3 | 5
6.9
< 0.3
36
< 1.0
36 | | 1.6
< 0.3
150
< 1.0
68 | 55
2.2
< 0.3
140
< 1.0
59 | < 0.3 | < 0.3 | 14
< 0.3
35
< 1.0
40 | | 45
< 0.3
33
< 1.0
92 | 20
77
< 0.3
26
< 1.0
74 | | Toluene µg/kg
Ethylbenzene µg/kg | 5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Petrolsum Hydrocarbons THH-CNG - Alphatic SECS - ECS _{MLD,R} mg/lq | 0.001 < 0.001
0.001 < 0.001
0.001 0.98 | < 0.001
1 < 0.001
2 < 0.001
7.3 | < 0.001
< 1.0 | 3.3
14 | < 0.001
< 0.001
< 0.001
< 0.001
14 | < 0.001
< 0.001
< 0.001
< 0.001
110
390 | < 0.001
< 0.001
0.88
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001 | < 0.001 | < 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001
3.8 | < 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
6.6 | < 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 0.001
< 1.0
< 2.0 | | THY-CWG - Alphatec > EC12 - EC15 as cs 10.0.4 mg/kg THY-CWG - Alphatec > EC16 - EC21 as cs 10.0.8 mg/kg THY-CWG - Alphatec > EC21 - EC35 as cs 10.0.0.8 mg/kg THY-CWG - Alphatec (EC5 - EC35) as cs 10.0.0.8 mg/kg THY-CWG - Alphatec (EC5 - EC35) as cs 10.0.0.8 mg/kg | 2 2000
8 2200
8 800
90 5200
0.001 < 0.001
0.001 < 0.001 | 40
< 8.0
100 | < 2.0
< 8.0
< 8.0
< 10 | 300
930
< 0.001 | < 8.0
350
< 0.001 | 240
90
820
< 0.001 | < 8.0
< 8.0
< 10 | < 2.0
< 8.0
< 8.0
< 10
< 0.001 | < 2.0
< 8.0
< 8.0
< 10 | 9.7
< 8.0
36
< 0.001 | 46
89
< 0.001 | < 2.0
< 8.0
< 8.0
< 10 | 24
45
< 0.001 | < 8.0
< 10
< 0.001 | < 2.0
< 8.0
< 8.0
< 10 | 64
79
90
240
< 0.001 | < 2.0
< 8.0
< 8.0
< 10 | < 8.0
< 8.0
< 10
< 0.001 | < 0.001 | < 8.0
< 10
< 0.001 | < 2.0
< 8.0
< 8.0
< 10
< 0.001 | 110
160
150
430
< 0.001 | < 8.0
< 10
< 0.001 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
< 8.0
< 10 | < 2.0
< 8.0
< 8.0
< 10 | 21
110
130
< 0.001 | | THY-CNG - Aromatic S-EC3 - EC3 _{RE 20, RE} | 0.001 < 0.001
0.001 < 0.001
1 82
2 1100
10 1200
10 580
10 3000 | 2.3
30
29 | < 0.001
< 1.0
< 2.0
< 10 | < 0.001
17
180 | < 0.001
< 0.001
6
110
170
90
390 | < 0.001
< 0.001
15
150
130
< 10
300 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 0.001
< 1.0 | < 0.001
< 0.001
< 1.0
5.4 | < 0.001
< 0.001
< 1.0 | | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 1.0
33
130 | < 0.001
< 1.0 | < 0.001
< 1.0
< 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 2.0 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10 | < 0.001
< 0.001
3.2 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 1.0
< 2.0
< 10
< 10 | < 2.0
< 10 | < 0.001
< 0.001
< 1.0
< 2.0
< 10
< 10
< 10 | < 0.001
< 0.001
< 1.0
9.4
33
200
240 | | Chloroethane µg/kg Bromonisthane µg/kg Vinyl Chloride µg/kg Trichlorofluoromithane µg/kg | 5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | <5.0
<5.0
<5.0
<5.0
<5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | 1.1. (Circleosethane 」 は作成 | 5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1,1-Dichloropropene | 5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | <5.0
<5.0
<5.0
<5.0
<5.0
<5.0
<5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
<
5.0
< 5.0
< 5.0 | | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Bromodichloromethane µs/kg
Cis-1,3-dichloropropene µs/kg | 5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Dibromochloromethane µg/kg
Tetrachloroethene µg/kg | 5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | | 5 <5.0
5 <5.0
5 <5.0
5 <5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0 | | < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 2-Chiorotoluene µg/kg | 5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1.3.5-Trimstflybancee | 5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | 1.2 Oct-forobanzane 19年2 1.4 Oct-forobanzane 19年3 1.4 Oct-forobanzane 19年3 1.2 Obt-one-3 - 2 Obt-o | 5 < 5.0
5 < 5.0
5 < 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0
< 5.0
< 5.0 | | Messachicrobutadiene µ0/42
1,2,3-Trichicrobenzene µ0/42
SVOCs | 5 < 5.0 | < 5.0
< 5.0
< 0.1
< 0.2 | - | < 5.0
< 5.0
< 0.1
0.5 | < 5.0 | < 5.0
< 5.0
0.2
< 0.2 | 1 < 0.2 | < 5.0
< 5.0
0.6
< 0.2 | < 5.0 | < 5.0
< 5.0
0.2
< 0.2 | 0.1 | < 5.0
< 5.0
< 0.1
< 0.2 | < 5.0 | 0.1 | < 5.0
< 5.0
< 0.1
< 0.2 | < 5.0 | 0.4 | < 5.0 | | < 5.0 | 0.3 | < 5.0
< 5.0
0.4
< 0.2 | < 5.0
< 5.0
0.2
< 0.2 | < 0.1 | < 5.0
< 5.0
0.4
< 0.2 | < 5.0 | < 5.0
< 5.0 | | \$6(2-chlorosthy)chther mg/kg
1,3-Oichlorobertane mg/kg
1,2-Oichlorobertane mg/kg
1,4-Oichlorobertane mg/kg
1,4-Oichlorobertane mg/kg
86(2-chloroispropsylyther mg/kg | 0.1 < 0.1
0.2 < 0.2
0.2 < 0.2
0.1 < 0.1
0.2 < 0.2
0.1 < 0.1 | < 0.2
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
0.7
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
0.6
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | < 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | < 0.2
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.2
< 0.1
< 0.2
< 0.1 | | 2-Mothylphenol mg/kg Horachicrosthane mg/kg Mitosberusine mg/kg a Mothylphenol mg/kg | 0.3 < 0.3 | < 0.3
< 0.05
< 0.3 | < 0.05 | < 0.05
< 0.3
< 0.2 | < 0.05
< 0.05
< 0.3 | | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.05
< 0.3 | <0.03
<0.05
<0.03
<0.02
<0.02
<0.03
<0.03 | < 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3 | | < 0.3
< 0.05
< 0.3 | | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.3
< 0.3 | < 0.3
< 0.05
< 0.3 | < 0.3
< 0.05
< 0.3
< 0.2
< 0.2
< 0.2
< 0.3
< 0.3 | | < 0.3
< 0.05
< 0.3 | | < 0.3
< 0.05
< 0.3 | | Bis(2-chlorosthosy)methane mg/kg
1,2,4-Trichlorobensene mg/kg | 0.3 < 0.3
0.3 < 0.3
0.05 < 0.05 | < 0.3
< 0.3
< 0.05
< 0.05 | < 0.3
< 0.3
< 0.05
< 0.3 | 1.1
< 0.3
< 0.3
< 0.3
22
< 0.3
< 0.1 | < 0.3
< 0.3
0.21 | < 0.3 | < 0.3
< 0.3
< 0.3
< 0.06
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.3
< 0.05
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05
< 0.05
< 0.1 | < 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3 | < 0.3
< 0.3
< 0.3
< 0.05
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.3
< 0.05
< 0.3
< 0.1 | < 0.3 | < 0.3
< 0.3
< 0.05
< 0.3 | < 0.3
< 0.3
< 0.3
0.13
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.3
< 0.06
< 0.3
< 0.1 | < 0.3 | < 0.3
< 0.3
< 0.3
< 0.05
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.3
< 0.05
< 0.3
< 0.1 | < 0.3
< 0.3
< 0.3
0.33
< 0.3
< 0.1 | | 4-Chicro-3-methylphenol mg/kg 2,4,6-Trichforophenol mg/kg 2,4,5-Trichforophenol mg/kg 2,4,5-Trichforophenol mg/kg 2,4,5-Trichforophenol mg/kg 2,4,5-Trichforophenol mg/kg | 0.1 < 0.1
0.1 < 0.1
0.1 < 0.1
0.2 < 0.2
0.1 8.7 | < 0.1
< 0.1
< 0.1
< 0.2
0.3 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2 | <
0.1
< 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2 | < 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2
0.6 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.1
< 0.2
0.4 | < 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1 | < 0.1
< 0.1
< 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1
< 0.2
0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.2
0.8 | | Accesphithene mg/kg 2.4-Dinitrotolusne mg/kg | 0.1 < 0.1
0.1 < 0.1
0.05 < 0.05
0.05 7.8 | < 0.1
< 0.1
< 0.05
< 0.05 | < 0.1
< 0.05
< 0.05 | | < 0.05
0.79
< 0.2 | | < 0.1
< 0.1
< 0.1
< 0.05
< 0.05
< 0.05 | < 0.1
< 0.1
< 0.1
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05
0.13
< 0.2 | | < 0.1
< 0.05
< 0.05 | < 0.05
< 0.05 | | | < 0.1
< 0.05
< 0.05 | < 0.05
< 0.05 | < 0.1
< 0.05
< 0.05 | < 0.1
< 0.1
< 0.05
< 0.05 | < 0.1
< 0.1
< 0.1
< 0.05
0.11
< 0.2 | < 0.05
< 0.05 | < 0.1
< 0.1
< 0.0
< 0.05
0.79
< 0.2 | < 0.1
< 0.1
< 0.1
< 0.05
< 0.05
< 0.02 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.1
< 0.1
0.08
0.13 | < 0.05 | | 4-Nitroaniline mg/kg
Fluorene mg/kg | | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | 8.7
< 0.3
< 0.2
< 0.2
13
< 0.3 | 0.3
< 0.3
< 0.2
< 0.2
< 0.2
0.61
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | | < 0.2
< 0.3
< 0.2
< 0.2
< 0.2
0.19
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.2
0.08 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.2
0.06
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.2
0.1
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | | < 0.2
< 0.3
< 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.06
< 0.3 | < 0.2
< 0.2
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.2
< 0.2
< 0.2
0.16
< 0.3 | 0.4
< 0.3
< 0.2
< 0.2
0.63
< 0.3 | | Bromophery (phenyl other mg/kg Howard (howard) mg/kg Phorastribrene mg/kg Arthracine mg/kg Lobusty (phthalate mg/kg Diskuty (phthalate mg/kg | 0.2 < 0.2
0.3 < 0.3
0.05 12
0.05 3
0.1 < 0.3
0.2 < 0.2 | < 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
58
19
5.5
< 0.2 | < 0.2
< 0.3
0.65
0.35
< 0.3
< 0.2 | < 0.2
< 0.3
0.48
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.06
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
1.4
0.44
< 0.3
< 0.2 | < 0.2
< 0.3
0.66
0.17
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
0.17
0.09
< 0.3
< 0.2 | < 0.2
< 0.3
0.07
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
0.44
0.14
< 0.3
< 0.2 | < 0.2
< 0.3
0.94
0.22
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
0.09
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.2 | < 0.2
< 0.3
0.52
0.13
< 0.3
< 0.2 | < 0.2 | < 0.2
< 0.3
1.4
0.36
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.06
< 0.06
< 0.3
< 0.2 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3 | < 0.2
< 0.3
1.2
0.39
< 0.3
< 0.2 | < 0.2
< 0.3
1.6
0.74
< 0.3
< 0.2 | | Butyl benzyl phthalate mg/kg | 0.3 < 0.3
0.05 5
0.05 3.9
0.3 < 0.3
0.05 0.73
0.05 0.73 | < 0.3
0.12
0.13
< 0.3
0.05 | < 0.3
< 0.05
< 0.05
< 0.3
< 0.05 | < 0.3
48
44 | 0.6
0.78
0.69
< 0.3
0.16
0.12 | < 0.3
0.31
0.38 | < 0.3
< 0.05
< 0.06
< 0.3
< 0.06
< 0.06 | < 0.3
< 0.05
< 0.05
< 0.3
< 0.05
< 0.05 | < 0.05
< 0.05 | < 0.3
2.3
1.9
< 0.3
0.91 | < 0.3
0.73
0.68 | < 0.3
< 0.05
< 0.05 | < 0.3
0.39
0.45 | < 0.3
0.09
0.11
< 0.3
0.05 | < 0.3
0.67
0.74
< 0.3
0.33
0.38 | < 0.3
1.4
1.4 | < 0.3
< 0.05
< 0.05
< 0.05
< 0.3
< 0.05 | < 0.3
0.22
0.23
< 0.3
0.11 | < 0.3
< 0.05
< 0.05
< 0.3
< 0.05
< 0.05 | < 0.3
0.47
0.44 | < 0.3
< 0.05
< 0.05 | < 0.3
0.65
0.51
< 0.3
0.1 | < 0.2
< 0.3
< 0.05
< 0.05
< 0.3
< 0.05
< 0.05 | < 0.2
< 0.3
0.05
0.05
< 0.3
< 0.05
< 0.05 | < 0.05
< 0.05 | < 0.3
1.9
1.8
< 0.3
0.95 | < 0.3
1.1
0.77
< 0.3
0.54
0.37 | | Beruz(b)fluoranthane mg/kg Beruz(k)fluoranthana mg/kg Beruz(a)fluoranthana mg/kg Beruz(a)fluoranta mg/kg Indand L.2.3 cofluorana mg/kg | 0.05 0.38
0.05 0.21
0.05 0.33
0.05 0.08
0.05 0.05
0.05 0.13 | 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | 21
8.9
19
7.8 | 0.09
0.05
0.07
< 0.05 | 0.13 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | 0.83
0.56
0.82
0.42 | 0.39
0.21
0.31
0.2 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.05 | 0.17
0.11
0.2
0.13 | 0.05
< 0.05
< 0.05
< 0.05 | 0.33
0.18
0.34
0.15 | 0.61
0.24
0.56
0.33 | < 0.05
< 0.05
< 0.05
< 0.05
< 0.05
< 0.06
< 0.06 | 0.12
< 0.05
0.1
< 0.05 | < 0.05
< 0.05
< 0.05
< 0.05 | 0.17
0.05
0.16 | < 0.05
< 0.05 | < 0.07 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | 1
0.46
0.96 | 0.37
0.15
0.29
0.11
< 0.05
0.2 | parameter failure associated with this result; other checks applied prior to reporting the data have been accepted and the failure justified as having no significant impact on sample data reported. U/S – Unsuitable Sample 1/S – Insufficient Sample ND – Not Dets | Lab Sample Number
Sample Reference
Depth (m) | | | 2533964
ECBH16
1.00 | 2533965
ECBH16
3.00 | 2533966
ECBH16
4.00 | 2533967
ECBH17
0.50 | 2533968
ECBH17
1.00 | 2533969
ECBH17
3.00 | 2533970
ECBH17
4.00 | 2533971
ECBH18
0.50 | 2533972
ECBH18
1.00 | 2533973
ECBH18
3.00 | |--|--------------------------------------|---------------------------------|--|------------------------------------|------------------------------------|------------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------------| | Analytical Parameter
(Soil Analysis) | Unks | Limit of detection | | | | | | | | | | | | Stone Content
Moisture Content
Total mass of sample received | %
%
kg | 0.1
0.01
0.001 | < 0.1
8
1 | < 0.1
21
1 | < 0.1
22
1 | < 0.1
11
1 | < 0.1
10
1 | < 0.1
19
1 | < 0.1
20
1 | < 0.1
10
1 | < 0.1
8.9
1 | < 0.1
8.7
1 | | Asbestos in Soil Screen / Identification Name | Type | N/A | Chrysotile,
Amosite - Loose
Fibrous Debris | | | | - | - | | | | | | Asbestos in Soil
Asbestos Analyst ID | Type
N/A | N/A
N/A | Detected
SCA | N/A | N/A | Not-detected
SCA | Not-detected
SCA | N/A | N/A | Not-detected
SCA | Not-detected
SCA | N/A | | General Inorganics
pH - Automated
Water Soluble Sulphate as SO4 16hr extraction (2:1)
Water Soluble SO4 16hr extraction (2:1 Leachate Equivale | pH Units
mg/kg
r g/l | N/A
2.5
0.00125 | 8.4 | 8.2
16
0.0082 | 8.5 | 8.2
19
0.0094 | 8.3 | 8
250
0.12 | 8.1 | 10.4
190
0.094 | 11.4 | 8.9
76
0.038 | | Water Soluble SO4 16hr extraction (2:1 Leachate Equivale
Heavy Metals / Metalloids | mg/l | 1.25 | | 8.2 | | 9.4 | - | 123 | | 93.8 | | 37.8 | | Arsenic (aqua regia extractable) Cadmium (aqua regia extractable) Chromium (horassalant) | mg/kg
mg/kg
mg/kg | 1
0.2
1.8 | 8.8
< 0.2
< 1.8 | 6.5
< 0.2
< 1.8 | 8.1
< 0.2
< 1.8 | 7.8
< 0.2
< 1.8 | 8.7
< 0.2
< 1.8 | 5.7
< 0.2
< 1.8 | 7.9
< 0.2
< 1.8 | 5.3
< 0.2
< 1.8 | 13
< 0.2
< 1.8 | 6
<0.2
<1.8 | | Chromium (III) Chromium (aqua regia extractable) Copper (aqua regia extractable) | mg/kg
mg/kg | 1 | 22
22
25
56 | 30
30
8.1 | 27
27
5.3 | 29
29
20 | 33
33
25
47 | 29
29
9.6 | 30
30
4.4 | 9.5
9.5
45 | 13
14
34
72 | 7 7 20 | | Lead (aqua regia extractable) Mercury (aqua regia extractable) Néckol (aqua regia extractable) Selemium (aqua regia extractable) | mg/kg
mg/kg | 0.3 | < 0.3
30
< 1.0 | 9.4
< 0.3
33
< 1.0 | 11
< 0.3
30
< 1.0 | 35
< 0.3
37
< 1.0 | 0.8
43
< 1.0 | 29
< 0.3
37
< 1.0 | 11
< 0.3
34
< 1.0 | 70
<
0.3
14
< 1.0 | < 0.3
26 | 10
< 0.3
6
< 1.0 | | Selenium (aqua regia extractable)
Zinc (aqua regia extractable)
Monoaromatics & Oxygenates* | mg/kg | 1 | 59 | < 1.0
38 | 40 | 82 | 110 | 45 | 40 | 58 | < 1.0
73 | 43 | | Servene Tolume Ethylburoane p & m-xylene | haya
haya
haya
haya | 5 5 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
29
220
3000 | < 5.0
< 5.0
< 5.0
< 5.0 | | p & m-xylene
o-xylene
MTBE (Methyl Tertiary Butyl Ether) | höyd
höyd
höyd | 5 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | Petroleum Hydrocarbons TPH-CWG - Aliphatic >ECS - EC6 _{161,101,86} TPH-CWG - Aliphatic >EC6 - EC8 _{161,101,86} | mg/kg
mg/kg | 0.001 | < 0.001
< 0.001 | < 0.001
36 | < 0.001 | < 0.001 | < 0.001 | < 0.001
< 0.001 | | TPH-CWG - Aliphatic >EC8 - EC10 _{et 10 M}
TPH-CWG - Aliphatic >EC10 - EC12 _{th CU, 10 M}
TPH-CWG - Aliphatic >EC12 - EC16 _{th CU, 10 M} | mg/kg
mg/kg | 0.001 | < 0.001
< 1.0
< 2.0 | < 0.001
< 1.0
< 2.0
< 8.0 | 150
84
1200 | < 0.001
< 1.0
24
43 | < 0.001
23
180 | < 0.001
< 1.0
14 | < 0.001
< 1.0
< 2.0
< 8.0 | | TPH-CWG - Aliphatic > EC16 - EC21 _{28 CL 29 A}
TPH-CWG - Aliphatic > EC21 - EC35 _{28 CL 20 A}
TPH-CWG - Aliphatic (EC5 - EC35) _{28 CL 20 A} | mg/kg
mg/kg | 8
8
30 | < 8.0
8.1
< 10 | < 8.0
< 8.0
< 10 | < 8.0
< 8.0
< 10 | < 8.0
< 8.0
< 10 | < 8.0
22
25 | 1700
740
3800 | 43
11
78 | 260
770
1200 | 30
99
140 | < 8.0
< 8.0
< 10 | | TPH-CWG - Aromatic >EC5 - EC7 _{HL (D),M}
TPH-CWG - Aromatic >EC7 - EC8 _{HL (D),M} | mg/kg
mg/kg | 0.001 | < 0.001
< 0.001 | < 0.001 | < 0.001 | < 0.001
< 0.001 | < 0.001 | < 0.001
< 0.001 | < 0.001
> 0.001 | < 0.001 | < 0.001 | < 0.001
< 0.001 | | TPH-CWG - Aromatic > EC8 - EC10 _{int 10 int}
TPH-CWG - Aromatic > EC10 - EC12 _{int 10 int}
TPH-CWG - Aromatic > EC12 - EC16 _{int 10 int}
TPH-CWG - Aromatic > EC16 - EC11 _{int 10 in} | mg/kg
mg/kg
mg/kg
mg/kg | 0.001
1
2
10 | < 0.001
< 1.0
< 2.0
< 10 | 6.5
23
480
830 | < 0.001
< 1.0
8.2
20 | < 0.001
< 1.0
47
140 | < 0.001
< 1.0
< 2.0
13 | < 0.001
< 1.0
< 2.0
< 10 | | TPH-CWG - Aromatic >EC21 - EC35 _{EV CU 3D AR}
TPH-CWG - Aromatic (EC5 - EC35) _{EV,CU+HE,ED,ME} | mg/kg
mg/kg | 30 | 81
91 | < 10
< 10
< 10 | < 10
< 10
< 10 | < 10
< 10 | < 10
< 10 | 510
1900 | < 10
33 | 310
500 | 41
55 | < 10
< 10
18 | | VOCs* Chloromethane Chloroethane | hölgö
hölgö | 5 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | ÷ | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0 | - : | < 5.0
< 5.0 | | Bromomethane
Vinyi Chloride
Trichlorofluoromethane | haya
haya
haya | 5 5 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | | 1,1-Dichloroethene 1,1,2-Trichloro 1,2,2-Trifluoroethene CS-1,2-dichloroethene | haya
haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | | MTBE (Methyl Tertiary Butyl Ether) 1,1-DicHonoethane 2,2-DicHonopropane TricHororrethane | haya
haya
haya
haya | 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | | 1,1-1'richicrosthane
1,2-0ichloroethane
1,1-Dichloropropene | haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | | Trans-1,2-dichloroethene Senzene Vetrachloroethene | haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | | 1,2-Dichlospropane
Trichloroethene
Dibromomethene | haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | Bromodichloromethane
Cis-1,3-dichloropropene
Trans-1,3-dichloropropene | haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | Toluene
1,1,2-Trichloroethane
1,3-Dichloropropane | höyö
höyö
höyö | 5
5
5 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | 29
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0 | | Dibromodricomethane Tetrachloresthene 1,2-Dibromoethane Chloroberusne | haya
haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,1,1,2-Tetrachlorosthane
Ethylbenzane
p & m-Xylene | haya
haya
haya | 5 5 | | < 5.0
< 5.0 | < 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
220
3000 | < 5.0
< 5.0 | < 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | Styrene
Tribromomethane
o-Xylene | haya
haya
haya | 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | 1,1,2,2-Tetrachloroethane
Isopropylbenzene
Bromobenzene | haya
haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
570
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - : | < 5.0
< 5.0
< 5.0 | | n-Propybersene
2-Chlorotoluene
4-Chlorotoluene | haya
haya | 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | : | 830
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | tert-8utytherane 1,2,4-minuthytherane ur-8-triherane | haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | 6200
< 5.0
22000
780 | < 5.0
< 5.0 | < 5.0
< 5.0
8.3 | | < 5.0
< 5.0
< 5.0 | | 1,3-Dichlosoberzane p-Isopropyltoluene 1,2-Dichlosoberzene | haya
haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | - | 780
< 5.0
690
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0
< 5.0 | : | < 5.0
< 5.0
< 5.0
< 5.0 | | 1,4-Dichloroberusine
Buty/benzene
1,2-Dibromo-3-chloropropane | haya
haya
haya
haya
haya | 5 5 | | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
1300
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | | < 5.0
< 5.0
< 5.0 | | 1,2,4-Trichlorobenaene
Horsechlorobutadiene
1,2,3-Trichlorobenaene | höyö
höyö
höyö | 5 5 | : | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | ÷ | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | < 5.0
< 5.0
< 5.0 | - | < 5.0
< 5.0
< 5.0 | | SVOCs
Aniline
Phenol | mg/kg
mg/kg | 0.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 | 0.4 | 0.5 | < 0.1 | | /Harris
2-Chlorophenol
8s(2-chlorosthyl)other
1,3-Dichlorobenzene | mg/kg
mg/kg | 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | < 0.1 | | 1,2-Dichlorobenzene
1,4-Dichlorobenzene
Bis(2-chloroisopropyl)ether | mg/kg
mg/kg
mg/kg | 0.2
0.1
0.2
0.1 | < 0.2
< 0.1
< 0.2
< 0.1 0.5
< 0.1
< 0.2
< 0.1 | | 2-Methylphenol
Hexachicroethane
Nitroberzene | mg/kg
mg/kg
mg/kg | 0.3
0.05
0.3 | < 0.3
< 0.05
< 0.3 | 4-Methylphenol
Scopherone
2-Nitrophenol
2,4-Directhylphenol | mg/kg
mg/kg
mg/kg
mg/kg | 0.2
0.2
0.3 | < 0.2
< 0.2
< 0.3
< 0.3 | Bis(2-chloroethoxy)methane
1,2,4-Trichlorobenzene
Naphthalene | mg/kg
mg/kg | 0.3
0.3
0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
0.89 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
< 0.05 | < 0.3
< 0.3
0.21 | | 2,4-Dichlorophenol
4-Chloroaniline
Hissachlorobutadiene | mg/kg
mg/kg | 0.3
0.1
0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1 | < 0.3
< 0.1
< 0.1
< 0.1 | | 4-Chloro-3-methylphenal
2,4,6-Trichlorophenal
2,4,5-Trichlorophenal | mg/kg
mg/kg
mg/kg | 0.1
0.1
0.2
0.1
0.1 | < 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.2 | < 0.1
< 0.1
< 0.2
< 0.1 | < 0.1
< 0.1
< 0.2
0.2 | | 2-Misthylmaphthalaine
2-Chirocnaphthalaine
Dimethylphthalaite
2-5-Dinitrotolusme | mg/kg
mg/kg
mg/kg | 0.1
0.1
0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 3.2
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | < 0.1
< 0.1
< 0.1
< 0.1 | 0.2
< 0.1
< 0.1
< 0.1 | | 2,9-Christocouena
Acenaphthhene
Acenaphthhene
2,4-Dinitrotoluena | mg/kg
mg/kg | 0.05
0.05
0.2
0.2 | <
0.05
< 0.05
< 0.2 | < 0.05
4.3
< 0.2 | < 0.05
0.25
< 0.2 | < 0.05
< 0.05
< 0.2 | < 0.08
< 0.05
< 0.2 | 0.41
0.29
< 0.2 | | Diberapfuran
4-Chiprophenyl phenyl ether
Diethyl phthalate | mg/kg
mg/kg | 0.3 | < 0.2
< 0.3
< 0.2 0.5
< 0.3
< 0.2 | | 4-Nitroaniline
Fluorene
Azoberssene | mg/kg
mg/kg | 0.2
0.05
0.3 | < 0.2
< 0.05
< 0.3 | < 0.2
3.9
< 0.3 | < 0.2
0.18
< 0.3 | < 0.2
< 0.05
< 0.3 | < 0.2
0.07
< 0.3 | < 0.2
0.4
< 0.3 | | Bromophenyl phenyl ether
Hosachlorobenaene
Phenanthrene
Authorope | mg/kg
mg/kg
mg/kg | 0.2
0.3
0.05 | < 0.2
< 0.3
0.13 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
< 0.05 | < 0.2
< 0.3
0.18 | < 0.2
< 0.3
0.31 | < 0.2
< 0.3
5.4 | < 0.2
< 0.3
0.16 | < 0.2
< 0.3
0.43 | < 0.2
< 0.3
0.86 | < 0.2
< 0.3
6.7 | | Anthracene
Carbazole
Disparate
Anthracianone | mg/kg
mg/kg
mg/kg
mg/kg | 0.05
0.3
0.2
0.3 | 0.06
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | < 0.05
< 0.3
< 0.2
< 0.3 | 0.06
< 0.3
< 0.2
< 0.3 | 0.09
< 0.3
< 0.2
< 0.3 | 1.7
< 0.3
< 0.2
< 0.3 | 0.11
< 0.3
< 0.2
< 0.3 | 0.1
< 0.3
< 0.2
< 0.3 | 0.21
< 0.3
< 0.2
< 0.3 | 1.5
0.5
< 0.2
< 0.3 | | Arthragunone Fluoranthene Pyrone Sutyl benzyl phthalate | mg/kg
mg/kg
mg/kg | 0.05
0.05
0.05 | < 0.3
0.21
0.2
< 0.3 | 0.05
0.05
0.05
< 0.3 | < 0.3
0.08
0.09
< 0.3 | < 0.3
0.24
0.23
< 0.3 | < 0.3
0.41
0.38
< 0.3 | < 0.3
3.5
3.1
< 0.3 | < 0.3
0.26
< 0.3 | < 0.37
0.47
< 0.3 | < 0.3
1.1
0.96
< 0.3 | < 0.3
6.6
5.5
< 0.3 | | Senzo(a)anthracene
Chrysene
Senzo(b)fluoranthene | mg/kg
mg/kg | 0.05
0.05
0.05
0.05 | 0.1
0.1
0.1 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | 0.13
0.09
0.1 | 0.2
0.15
0.19 | 0.52
0.6
0.36 | 0.07
0.06
0.05 | < 0.05
< 0.05
< 0.05 | 0.44
0.45
0.48 | 2.1
2.1
1.8 | | Berac(k)fluoranthene
Berac(a)pyrene
Indeno(1,2,3-cd)pyrene | mg/kg
mg/kg | 0.05
0.05
0.05
0.05 | 0.07 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | 0.05
0.08
< 0.05 | 0.06
0.14
0.08 | 0.16
0.29
0.13 | < 0.05
< 0.05
< 0.05 | < 0.05
< 0.05
< 0.05 | 0.19
0.42
0.22 | 1.1
1.7
0.88 | | Dibero(a,h)anthracine
Beroo(ghi)perylene | mg/kg
mg/kg | 0.05 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05 | < 0.05
< 0.05 | < 0.05
0.1 | < 0.05
0.13 | < 0.05
< 0.05 | < 0.05
< 0.05 | < 0.05
0.27 | 0.19 | *Data reported unaccreated due to quality control parameter failure associated with this result; other checks applied prior to reporting the data have been accepted and the failure justified as having rossiprificant impact on sample data reported. US = Unsuitable Sample US = Insufficient Sample MD = Not Detect